Let U={1,2,3,4,5,6,7,8,9}, A= {1,2,3,4} and B={2,4,6,8}, then find A’ & B’. About the author Serenity
Question:– Let U={1,2,3,4,5,6,7,8,9}, A= {1,2,3,4} and B={2,4,6,8}, then find A’ & B’. Required Answer:– Given:– [tex]\\ \sf{ \rightarrow{ U= \{1,2,3,4,5,6,7,8,9 \}}}[/tex] [tex] \sf{ \rightarrow{A= {1,2,3,4} }}[/tex] [tex] \sf{ \rightarrow{B={2,4,6,8}}} \\ \\ [/tex] To Find:– [tex] \\ \sf{ \rightarrow{ find \: A’ \: \& \: B’}} \\ \\ [/tex] ♡Solution:– First, let’s know what does A’ and B’ means in this question. A’ is called complement of A set. Which means A’ is a set of all elements in the given universal set U that are not in A Similarly, B’ is a set of all elements in the given universal set U that are not in B [tex] \\ \sf{Now \: let’s \: solve \: this! } \\ \\ [/tex] [tex] \\ \sf{ \bold{A’ }= U – A}[/tex] [tex] \\ \sf{ \implies{ \bold{A’ }= \{1,2,3,4,5,6,7,8,9 \} – \{1,2,3,4 \}}}[/tex] [tex] \\ \sf{ \implies{ \bold{A’ }= \bold{ \{5,6,7,8,9 \}}}} \\ \\ [/tex] [tex] \\ \rm{ \therefore{ \bold{A’ }= \red{ \{5,6,7,8,9 \}}}} \\ \\ [/tex] Now, [tex] \\ \\ \sf{ \bold{B’ }= U – B}[/tex] [tex] \\ \sf{ \implies{ \bold{B’} = \{1,2,3,4,5,6,7,8,9 \} – \{2,4,6,8 \}}}[/tex] [tex] \\ \sf{ \implies{ \bold{B’} = \bold{ \{1,3,5,7,9\}}}} \\ \\ [/tex] [tex] \\ \sf{ \therefore{ \bold{B’} = \red{ \{1, 3,5,7,9\}}}}\\\\[/tex] Therefore, A’ = {5, 6,7,8} and B’ = {1, 3,5,7,9} Reply
Step-by-step explanation:
A’=(5,6,7,8,9)
B’=(1,3,5,7,9)
Question:–
Let U={1,2,3,4,5,6,7,8,9}, A= {1,2,3,4} and B={2,4,6,8}, then find A’ & B’.
Required Answer:–
Given:–
[tex]\\ \sf{ \rightarrow{ U= \{1,2,3,4,5,6,7,8,9 \}}}[/tex]
[tex] \sf{ \rightarrow{A= {1,2,3,4} }}[/tex]
[tex] \sf{ \rightarrow{B={2,4,6,8}}} \\ \\ [/tex]
To Find:–
[tex] \\ \sf{ \rightarrow{ find \: A’ \: \& \: B’}} \\ \\ [/tex]
♡Solution:–
First, let’s know what does A’ and B’ means in this question.
A’ is called complement of A set. Which means A’ is a set of all elements in the given universal set U that are not in A
Similarly, B’ is a set of all elements in the given universal set U that are not in B
[tex] \\ \sf{Now \: let’s \: solve \: this! } \\ \\ [/tex]
[tex] \\ \sf{ \bold{A’ }= U – A}[/tex]
[tex] \\ \sf{ \implies{ \bold{A’ }= \{1,2,3,4,5,6,7,8,9 \} – \{1,2,3,4 \}}}[/tex]
[tex] \\ \sf{ \implies{ \bold{A’ }= \bold{ \{5,6,7,8,9 \}}}} \\ \\ [/tex]
[tex] \\ \rm{ \therefore{ \bold{A’ }= \red{ \{5,6,7,8,9 \}}}} \\ \\ [/tex]
Now,
[tex] \\ \\ \sf{ \bold{B’ }= U – B}[/tex]
[tex] \\ \sf{ \implies{ \bold{B’} = \{1,2,3,4,5,6,7,8,9 \} – \{2,4,6,8 \}}}[/tex]
[tex] \\ \sf{ \implies{ \bold{B’} = \bold{ \{1,3,5,7,9\}}}} \\ \\ [/tex]
[tex] \\ \sf{ \therefore{ \bold{B’} = \red{ \{1, 3,5,7,9\}}}}\\\\[/tex]
Therefore, A’ = {5, 6,7,8} and B’ = {1, 3,5,7,9}