1 thought on “Leg t=19 and hypotenuse u=26 what will leg v equal if this is a right triangle?”
Answer:
[tex]\huge\boxed{v=3\sqrt{35}}[/tex]
Step-by-step explanation:
Use the Pythagorean theorem:
[tex]t^2+v^2=u^2[/tex]
We have
[tex]t=19,\ u=26[/tex]
substitute:
[tex]26^2=19^2+v^2\\\\676=361+v^2\qquad|\text{subtract 361 from both sides}\\\\315=v^2\to v=\sqrt{315}\\\\v=\sqrt{9\cdot35}\\\\v=\sqrt{9}\cdot\sqrt{35}\\\\v=3\sqrt{35}[/tex]
Answer:
[tex]\huge\boxed{v=3\sqrt{35}}[/tex]
Step-by-step explanation:
Use the Pythagorean theorem:
[tex]t^2+v^2=u^2[/tex]
We have
[tex]t=19,\ u=26[/tex]
substitute:
[tex]26^2=19^2+v^2\\\\676=361+v^2\qquad|\text{subtract 361 from both sides}\\\\315=v^2\to v=\sqrt{315}\\\\v=\sqrt{9\cdot35}\\\\v=\sqrt{9}\cdot\sqrt{35}\\\\v=3\sqrt{35}[/tex]
Used
[tex]\sqrt{ab}=\sqrt{a}\cdot\sqrt{b},\ a\geq0\ \wedge\ b\geq0[/tex]