Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hoursat 24 mph speed. What is the average speed of Jim’s travel in mph?O 36 mphO 37.5 mph0 42 mphO 42.5 mphO O 48 mph About the author Arya
Given : Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours at 24 mph speed. Need To Find : Average Speed of Jim’s travel in mph . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ⠀⠀⠀⠀Finding Distance Travelled in both case of speed : ⠀Finding Distance Travelled in first 3 hrs at the speed of 60 mph : [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex] [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex] ⠀⠀⠀⠀Here , Speed is 60 mph & Time is 3 hrs . ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]\qquad \longmapsto \sf{ Distance = 60 \times 3 }\\[/tex] [tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 180km }} }\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:first\:3\:hours \:is\:\bf{180\: km}}}}\\[/tex] ⠀Finding Distance Travelled in remaining 5 hrs at the speed of 24 mph : [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex] [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex] ⠀⠀⠀⠀Here , Speed is 24 mph & Time is 5 hrs . ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]\qquad \longmapsto \sf{ Distance = 24 \times 5 }\\[/tex] [tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 120 km }} }\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:remaining \:8\:hours \:is\:\bf{120\: km}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ⠀⠀⠀⠀Now , Finding Average Speed : [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex] [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Average \:Speed\:\:: \dfrac{Total\;Distance \:Travelled\:}{Total\:Time\:Taken}}\bigg\rgroup \\\\[/tex] Here , ⠀⠀⠀⠀Total Distance Travelled = Distance Travelled in first 3 hrs + Distance Travelled ⠀⠀⠀⠀in remaining 5 hrs . ⠀⠀⠀⠀Total Distance Travelled = 120 km + 180 km ⠀⠀⠀⠀Total Distance Covered in journey = 300 km . ⠀⠀& ⠀⠀⠀⠀Total Time Taken = 3hrs + 5 hrs ⠀⠀⠀⠀Total Time Taken = 8 hrs . ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]\qquad \longmapsto \sf { Average \:Speed = \dfrac{300}{8}}\\[/tex] [tex]\qquad \longmapsto \sf { Average \:Speed = \cancel {\dfrac{300}{8}}}\\[/tex] [tex]\qquad \longmapsto \frak{\underline{\purple{\:Average \:Spped\: = 37.5 mph }} }\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:The\:Average \:Speed\:of\:Jim’s\:travel \:is\:\bf{37.5\:mph}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Given : Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours at 24 mph speed.
Need To Find : Average Speed of Jim’s travel in mph .
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀Finding Distance Travelled in both case of speed :
⠀Finding Distance Travelled in first 3 hrs at the speed of 60 mph :
[tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex]
⠀⠀⠀⠀Here , Speed is 60 mph & Time is 3 hrs .
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]\qquad \longmapsto \sf{ Distance = 60 \times 3 }\\[/tex]
[tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 180km }} }\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:first\:3\:hours \:is\:\bf{180\: km}}}}\\[/tex]
⠀Finding Distance Travelled in remaining 5 hrs at the speed of 24 mph :
[tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex]
⠀⠀⠀⠀Here , Speed is 24 mph & Time is 5 hrs .
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]\qquad \longmapsto \sf{ Distance = 24 \times 5 }\\[/tex]
[tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 120 km }} }\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:remaining \:8\:hours \:is\:\bf{120\: km}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀Now , Finding Average Speed :
[tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \sf{ Average \:Speed\:\:: \dfrac{Total\;Distance \:Travelled\:}{Total\:Time\:Taken}}\bigg\rgroup \\\\[/tex]
Here ,
⠀⠀⠀⠀Total Distance Travelled = Distance Travelled in first 3 hrs + Distance Travelled ⠀⠀⠀⠀in remaining 5 hrs .
⠀⠀⠀⠀Total Distance Travelled = 120 km + 180 km
⠀⠀⠀⠀Total Distance Covered in journey = 300 km .
⠀⠀&
⠀⠀⠀⠀Total Time Taken = 3hrs + 5 hrs
⠀⠀⠀⠀Total Time Taken = 8 hrs .
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]\qquad \longmapsto \sf { Average \:Speed = \dfrac{300}{8}}\\[/tex]
[tex]\qquad \longmapsto \sf { Average \:Speed = \cancel {\dfrac{300}{8}}}\\[/tex]
[tex]\qquad \longmapsto \frak{\underline{\purple{\:Average \:Spped\: = 37.5 mph }} }\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:The\:Average \:Speed\:of\:Jim’s\:travel \:is\:\bf{37.5\:mph}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀