Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours
at 24 mph speed. What is the average s

By Arya

Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours
at 24 mph speed. What is the average speed of Jim’s travel in mph?
O 36 mph
O 37.5 mph
0 42 mph
O 42.5 mph
O O 48 mph​

About the author
Arya

1 thought on “Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours<br />at 24 mph speed. What is the average s”

  1. Given : Jim travels the first 3 hours of his journey at 60 mph speed and the remaining 5 hours at 24 mph speed.

    Need To Find : Average Speed of Jim’s travel in mph .

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ⠀⠀⠀⠀Finding Distance Travelled in both case of speed :

    ⠀Finding Distance Travelled in first 3 hrs at the speed of 60 mph :

    [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]

    [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex]

    ⠀⠀⠀⠀Here , Speed is 60 mph & Time is 3 hrs .

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]

    [tex]\qquad \longmapsto \sf{ Distance = 60 \times 3 }\\[/tex]

    [tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 180km }} }\\[/tex]

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:first\:3\:hours \:is\:\bf{180\: km}}}}\\[/tex]

    ⠀Finding Distance Travelled in remaining 5 hrs at the speed of 24 mph :

    [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]

    [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Distance \:: Speed \times Time }\bigg\rgroup \\\\[/tex]

    ⠀⠀⠀⠀Here , Speed is 24 mph & Time is 5 hrs .

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]

    [tex]\qquad \longmapsto \sf{ Distance = 24 \times 5 }\\[/tex]

    [tex]\qquad \longmapsto \frak{\underline{\purple{\:Distance = 120 km }} }\\[/tex]

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:Distance \:Travelled \:in\:remaining \:8\:hours \:is\:\bf{120\: km}}}}\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ⠀⠀⠀⠀Now , Finding Average Speed :

    [tex]\dag\:\:\it{ As,\:We\:know\:that\::}\\[/tex]

    [tex]\qquad \dag\:\:\bigg\lgroup \sf{ Average \:Speed\:\:: \dfrac{Total\;Distance \:Travelled\:}{Total\:Time\:Taken}}\bigg\rgroup \\\\[/tex]

    Here ,

    ⠀⠀⠀⠀Total Distance Travelled = Distance Travelled in first 3 hrs + Distance Travelled ⠀⠀⠀⠀in remaining 5 hrs .

    ⠀⠀⠀⠀Total Distance Travelled = 120 km + 180 km

    ⠀⠀⠀⠀Total Distance Covered in journey = 300 km .

    ⠀⠀&

    ⠀⠀⠀⠀Total Time Taken = 3hrs + 5 hrs

    ⠀⠀⠀⠀Total Time Taken = 8 hrs .

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]

    [tex]\qquad \longmapsto \sf { Average \:Speed = \dfrac{300}{8}}\\[/tex]

    [tex]\qquad \longmapsto \sf { Average \:Speed = \cancel {\dfrac{300}{8}}}\\[/tex]

    [tex]\qquad \longmapsto \frak{\underline{\purple{\:Average \:Spped\: = 37.5 mph }} }\\[/tex]

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {\:The\:Average \:Speed\:of\:Jim’s\:travel \:is\:\bf{37.5\:mph}}}}\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply

Leave a Comment