It the length of the cuboid is 10 cm its breaths is 12 cm and height is 5 cm them its Volume is_________
(A) 120 cucm (B) 6o

By Ayla

It the length of the cuboid is 10 cm its breaths is 12 cm and height is 5 cm them its Volume is_________
(A) 120 cucm (B) 6o cucm (C) 600cucm (d) 30 cucm.​

About the author
Ayla

2 thoughts on “It the length of the cuboid is 10 cm its breaths is 12 cm and height is 5 cm them its Volume is_________<br />(A) 120 cucm (B) 6o”

  1. Given : The length of the cuboid is 10 cm its breadth is 12 cm and height is 5 cm .

    Need To Find : Volume of Cuboid .

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ⠀⠀⠀⠀⠀⠀⠀Finding Volume of Cuboid :

    [tex]\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\bf Volume\:of\:Cuboid\:\:: \\[/tex]

    [tex]\qquad \dag\:\:\bigg\lgroup \sf{Volume _{(Cuboid)} \:: l \times b \times h \: cu.unit}\bigg\rgroup \\\\[/tex]

    ⠀⠀⠀⠀⠀⠀⠀Here , l is the Length of Cuboid, b is the Breadth of Cuboid & h is the Height of Cuboid.

    [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 10 \times 12 \times 5 \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 120 \times 5 \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 600 \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \underline{\pmb{\purple{\: Volume _{(Cuboid)} \:=\: 600 \:cm ^3 }} }\:\:\bigstar \\\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence, \:Volume \:of\:Cuboid \:is\:\bf 600\:cm^3 }}\\\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]

    [tex]\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth [/tex]

    [tex]\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth) [/tex]

    [tex]\qquad \leadsto \sf Area_{(Square)} = Side \times Side [/tex]

    [tex]\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side [/tex]

    [tex]\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )[/tex]

    [tex]\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height [/tex]

    [tex]\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height [/tex]

    [tex]\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2} [/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply
  2. [tex]\sf\large\pink{\underbrace{Answer=Option-(C)}}[/tex]

    [tex]\bf\large\underline\red{Given:-}[/tex]

    [tex]\sf{\longrightarrow Length=10cm}[/tex]

    [tex]\sf{\longrightarrow Breadth=12cm}[/tex]

    [tex]\sf{\longrightarrow Height=5cm}[/tex]

    [tex]\bf\large\underline\orange{To\:Find\:Out:-}[/tex]

    [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=?}[/tex]

    [tex]\bf\large\underline\green{Solution:-}[/tex]

    [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=l*b*h}[/tex]

    [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=10*12*5}[/tex]

    [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=120*5}[/tex]

    [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=600cm^3}[/tex]

    Reply

Leave a Comment