It the length of the cuboid is 10 cm its breaths is 12 cm and height is 5 cm them its Volume is_________(A) 120 cucm (B) 6o cucm (C) 600cucm (d) 30 cucm. About the author Ayla
Given : The length of the cuboid is 10 cm its breadth is 12 cm and height is 5 cm . Need To Find : Volume of Cuboid . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ⠀⠀⠀⠀⠀⠀⠀Finding Volume of Cuboid : [tex]\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\bf Volume\:of\:Cuboid\:\:: \\[/tex] [tex]\qquad \dag\:\:\bigg\lgroup \sf{Volume _{(Cuboid)} \:: l \times b \times h \: cu.unit}\bigg\rgroup \\\\[/tex] ⠀⠀⠀⠀⠀⠀⠀Here , l is the Length of Cuboid, b is the Breadth of Cuboid & h is the Height of Cuboid. [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex] ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex] [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex] [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 10 \times 12 \times 5 \:\\\\[/tex] [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 120 \times 5 \:\\\\[/tex] [tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 600 \:\\\\[/tex] [tex]\qquad \dashrightarrow \underline{\pmb{\purple{\: Volume _{(Cuboid)} \:=\: 600 \:cm ^3 }} }\:\:\bigstar \\\\[/tex] ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence, \:Volume \:of\:Cuboid \:is\:\bf 600\:cm^3 }}\\\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex] [tex]\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth [/tex] [tex]\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth) [/tex] [tex]\qquad \leadsto \sf Area_{(Square)} = Side \times Side [/tex] [tex]\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side [/tex] [tex]\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )[/tex] [tex]\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height [/tex] [tex]\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height [/tex] [tex]\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2} [/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
[tex]\sf\large\pink{\underbrace{Answer=Option-(C)}}[/tex] [tex]\bf\large\underline\red{Given:-}[/tex] [tex]\sf{\longrightarrow Length=10cm}[/tex] [tex]\sf{\longrightarrow Breadth=12cm}[/tex] [tex]\sf{\longrightarrow Height=5cm}[/tex] [tex]\bf\large\underline\orange{To\:Find\:Out:-}[/tex] [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=?}[/tex] [tex]\bf\large\underline\green{Solution:-}[/tex] [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=l*b*h}[/tex] [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=10*12*5}[/tex] [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=120*5}[/tex] [tex]\sf{\longrightarrow Volume\:_{(cuboid)}=600cm^3}[/tex] Reply
Given : The length of the cuboid is 10 cm its breadth is 12 cm and height is 5 cm .
Need To Find : Volume of Cuboid .
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀⠀⠀Finding Volume of Cuboid :
[tex]\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\bf Volume\:of\:Cuboid\:\:: \\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \sf{Volume _{(Cuboid)} \:: l \times b \times h \: cu.unit}\bigg\rgroup \\\\[/tex]
⠀⠀⠀⠀⠀⠀⠀Here , l is the Length of Cuboid, b is the Breadth of Cuboid & h is the Height of Cuboid.
[tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex]
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]
[tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: l \times b \times h \:\\\\[/tex]
[tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 10 \times 12 \times 5 \:\\\\[/tex]
[tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 120 \times 5 \:\\\\[/tex]
[tex]\qquad \dashrightarrow \:\sf Volume _{(Cuboid)} \:=\: 600 \:\\\\[/tex]
[tex]\qquad \dashrightarrow \underline{\pmb{\purple{\: Volume _{(Cuboid)} \:=\: 600 \:cm ^3 }} }\:\:\bigstar \\\\[/tex]
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence, \:Volume \:of\:Cuboid \:is\:\bf 600\:cm^3 }}\\\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]
[tex]\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth [/tex]
[tex]\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth) [/tex]
[tex]\qquad \leadsto \sf Area_{(Square)} = Side \times Side [/tex]
[tex]\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side [/tex]
[tex]\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )[/tex]
[tex]\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height [/tex]
[tex]\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height [/tex]
[tex]\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2} [/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\sf\large\pink{\underbrace{Answer=Option-(C)}}[/tex]
[tex]\bf\large\underline\red{Given:-}[/tex]
[tex]\sf{\longrightarrow Length=10cm}[/tex]
[tex]\sf{\longrightarrow Breadth=12cm}[/tex]
[tex]\sf{\longrightarrow Height=5cm}[/tex]
[tex]\bf\large\underline\orange{To\:Find\:Out:-}[/tex]
[tex]\sf{\longrightarrow Volume\:_{(cuboid)}=?}[/tex]
[tex]\bf\large\underline\green{Solution:-}[/tex]
[tex]\sf{\longrightarrow Volume\:_{(cuboid)}=l*b*h}[/tex]
[tex]\sf{\longrightarrow Volume\:_{(cuboid)}=10*12*5}[/tex]
[tex]\sf{\longrightarrow Volume\:_{(cuboid)}=120*5}[/tex]
[tex]\sf{\longrightarrow Volume\:_{(cuboid)}=600cm^3}[/tex]