Is (x-3) a factor of f(x)=x^4-4x^3-x^2+16x-12


Is (x-3) a factor of f(x)=x^4-4x^3-x^2+16x-12

About the author
Autumn

2 thoughts on “Is (x-3) a factor of f(x)=x^4-4x^3-x^2+16x-12<br /><br /><br />”

  1. Answer:

    Appropriate Question :-

    If α and β are the zeroes of the quadratic polynomial f(x) = x² – px + q, then find the value of α² + β².

    Given :-

    α and β are the zeroes of the quadratic polynomial f(x) = x² – px + q.

    To Find :-

    What is the value of α² + β².

    Solution :-

    Given equation :

    \dashrightarrow \sf\bold{x^2 – px + q}⇢x

    2

    −px+q

    where,

    a = 1

    b = – p

    c = q

    Now, we have to find the sum and product of the zeroes :

    \clubsuit♣ Sum of Zeroes :

    \begin{gathered}\longmapsto \sf\boxed{\bold{\pink{Sum\: of\: Zeroes\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}\\\end{gathered}

    SumofZeroes(α+β)=

    a

    −b

    Then,

    \implies \sf \alpha + \beta =\: \dfrac{- (- p)}{1}⟹α+β=

    1

    −(−p)

    \begin{gathered}\implies \sf \alpha + \beta =\: \dfrac{p}{1}\: \bigg\lgroup \bold{\purple{- \times – =\: +}} \bigg\rgroup\\\end{gathered}

    ⟹α+β=

    1

    p

    −×−=+

    \implies \sf\bold{\green{\alpha + \beta =\: p}}⟹α+β=p

    Again,

    \clubsuit♣ Product of Zeroes :

    \begin{gathered}\longmapsto \sf\boxed{\bold{\pink{Product\: of\: Zeroes\: (\alpha\beta) =\: \dfrac{c}{a}}}}\\\end{gathered}

    ProductofZeroes(αβ)=

    a

    c

    Then,

    \implies \sf \alpha\beta =\: \dfrac{q}{1}⟹αβ=

    1

    q

    \implies \sf\bold{\green{\alpha\beta =\: q}}⟹αβ=q

    Now, we have to find the value of α² + β² :

    As we know that :

    \longmapsto \sf\boxed{\bold{\pink{a^2 + b^2 =\: (a + b)^2 – 2ab}}}⟼

    a

    2

    +b

    2

    =(a+b)

    2

    −2ab

    We have :

    α + β = p

    αβ = q

    According to the question by using the formula we get,

    \leadsto \sf \alpha^2 + \beta^2 =\: (\alpha + \beta)^2 – 2\alpha\beta⇝α

    2

    2

    =(α+β)

    2

    −2αβ

    \leadsto \sf \alpha^2 + \beta^2 =\: (p)^2 – 2q⇝α

    2

    2

    =(p)

    2

    −2q

    \leadsto \sf\bold{\red{\alpha^2 + \beta^2 =\: p^2 – 2q}}⇝α

    2

    2

    =p

    2

    −2q

    \therefore∴ The value of α² + β² is p² – 2q.

    Reply
  2. Answer:

    Step by Step Solution

    STEP1:

    Equation at the end of step 1

    ((((x4) – 22×3) – x2) + 16x) – 12

    STEP2:

    Polynomial Roots Calculator :

    2.1 Find roots (zeroes) of : F(x) = x4-4×3-x2+16x-12

    Polynomial Roots Calculator is a set of methods aimed at finding values of x for which F(x)=0

    hσpє ít’ѕ hєlpful tσ чσu

    Reply

Leave a Comment