In triangle ABC , DE is parallel to BC , DE is parallel to BC. If AD / BD = 3 / 4 and AC = 15 cm, find AE 6.4 cm 6 cm 7 cm 5 cm About the author Piper
Step-by-step explanation: Given : DE∥BC in △ ABC, Using Basic proportionality theorem, ∴ DB AD = EC AE ⇒ 3 1.5 = EC 1 ⇒EC= 1.5 3 EC=3× 15 10 =2 cm EC=2 cm. (ii) In △ABC,DE∥BC (Given) Using Basic proportionality theorem, ∴ DB AD = EC AE ⇒ 7.2 AD = 5.4 1.8 ⇒AD=1.8× 5.4 7.2 = 10 18 × 10 72 × 54 10 = 10 24 ⇒AD=2.4cm So, AD=2.4 cm Reply
[tex]\underline{\underline{\huge{\pink{\tt{\textbf Answer :-}}}}}[/tex] AD/DB =AE/(AC-AE) 3/4=AE/(15-AE) 3(15-AE)=4AE 45=4AE+3AE 45=4AE+3AE 45=7AE AE=45/7 =6.4 Reply
Step-by-step explanation:
Given : DE∥BC in △ ABC,
Using Basic proportionality theorem,
∴
DB
AD
=
EC
AE
⇒
3
1.5
=
EC
1
⇒EC=
1.5
3
EC=3×
15
10
=2 cm
EC=2 cm.
(ii) In △ABC,DE∥BC (Given)
Using Basic proportionality theorem,
∴
DB
AD
=
EC
AE
⇒
7.2
AD
=
5.4
1.8
⇒AD=1.8×
5.4
7.2
=
10
18
×
10
72
×
54
10
=
10
24
⇒AD=2.4cm
So, AD=2.4 cm
[tex]\underline{\underline{\huge{\pink{\tt{\textbf Answer :-}}}}}[/tex]
AD/DB =AE/(AC-AE)
3/4=AE/(15-AE)
3(15-AE)=4AE
45=4AE+3AE
45=4AE+3AE
45=7AE
AE=45/7
=6.4