In a 12 X 12 gameboard a red peg placed anywhere can attack another piece if the piece is present in the same row, or in the same column, or in any diagonal position in any possible 4 directions. However, there should not be any other peg in between the target peg and the red peg. The columns are labeled a to l
l
e
f
t
t
o
r
i
g
h
t
lefttoright and the rows are numbered 1 to 12
b
o
t
t
o
m
t
o
t
o
p
bottomtotop. The position of a piece is given by the combination of column and row labels. For example, position e means that the piece is in the e column and 5th row.
The red peg is the only piece on the board and it is at position f7. In how many positions can another piece be placed on the board such that it is safe from attack from the red peg?
Step-by-step explanation:
z. nsnnskqkkwamamajqjqs
[tex]2 { { \frac{6×6 \frac{ \sqrt[ { \frac{.2 \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[ \sqrt[51121113703652]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} ]{?} } } } } } } } } } } } } } } } } } } } } } \times \frac{?}{?} }{?} }^{?} \times \frac{?}{?} ]{?} }{?} }{?} }^{?} }^{?} [/tex]