(ii) Find four consecutive terms in an A.P. whose sum is 36 and the product of the 2ndand the 4th is 105. The terms are in ascending order. About the author Jasmine
[tex]\huge{\underline{\boxed{\red{\mathcal{ANSWER}}}}}[/tex] Given: Sum of 4 consecutive terms of an AP = 36 Product of 2nd and 4th term = 105 To Find: The 4 numbers Assumption: Let the terms be a-3d, a-d, a+d, a+3d. Solution: ⇒ Sum of the terms = 36 ⇒ (a – 3d) + (a – d) + (a + d) + (a + 3d) = 36 ⇒ 4a = 36 ⇒ a = 9 ————(1) Now, we know that: Product of 2nd and 3rd term = 105 ⇒ (a – d)*(a + 3d) = 105 ⇒ a² + 3ad – ad – 3d² = 105 ⇒ (9)² + 2(9)d – 3d² = 105 ⇒ 81 + 18d – 3d² = 105 ⇒ 18d – 3d² = 24 ⇒ 3d² – 18d + 24 = 0 ⇒ d² – 6d + 8 = 0 ⇒ d² – 2d – 4d + 8 = 0 ⇒ d(d – 2) – 4(d – 2) = 0 ⇒ (d – 2)*(d – 4) = 0 So, ⇒ d = 2 OR d = 4 ———-(2) The terms when d = 2: a – 3d = 9 – 3(2) = 9 – 6 = 3 a – d = 9 – 2 = 7 a + d = 9 + 2 = 11 a + 3d = 9 + 3(2) = 9 + 6 = 15 The terms when d = 4: a – 3d = 9 – 3(4) = 9 – 12 = -3 a – d = 9 – 4 = 5 a + d = 9 + 4 = 13 a + 3d = 9 + 3(4) = 9 + 12 = 21 Hence, the terms are 3, 7, 11, 15 OR -3, 5, 13, 21. Verification: 1. Sum of terms: ⇒ 3 + 7 + 11 + 15 & -3 + 5 + 13 + 21 ⇒ 36 2. Product of the 2nd and the 4th term: ⇒ 7 * 15 & 5 * 21 ⇒ 105 Hence verified!!! Reply
here let the first term be a followed by a+d,a+2d and a+3d sn= n/2 (2a+(n-1)d) 36= 4/2(2a+3d) 18=(2a+3d) a=18-3d/2 and now, for the product (a+d)(a+3d)= 105 (18-3d+2d)(18-3d+6d)= 105×4 (18-d)(18+3d)= 420 324+54d-18d-3d²=420 -3d²+36+324=420 d²-12d-108=-140 d²-12d-108+140=0 d²-12d+32=0 d²-8d-4d+32= 0 d(d-8)-4(d-8)=0 (d-4)(d-8)=0 either d = 4 or d = 8 when d= 8 a= 18-3×8/2= -6/2= -3 a= -3 a2= -3+8=5 a3=-3+2×8=13 a4= -3+3×8= 21 so the numbers are -3, 5, 13 and 21 And again when d= 4 a= 18-3d/2= 18-12/2= 6/2= 3 the numbers are a=3 a2= a+d= 3+4= 7 a3= a+2d= 3+2×4= 11 a4= a+ 3d= 3+3×4= 15 Reply
[tex]\huge{\underline{\boxed{\red{\mathcal{ANSWER}}}}}[/tex]
Given:
To Find:
Assumption:
Solution:
⇒ Sum of the terms = 36
⇒ (a – 3d) + (a – d) + (a + d) + (a + 3d) = 36
⇒ 4a = 36
⇒ a = 9 ————(1)
Now, we know that:
Product of 2nd and 3rd term = 105
⇒ (a – d)*(a + 3d) = 105
⇒ a² + 3ad – ad – 3d² = 105
⇒ (9)² + 2(9)d – 3d² = 105
⇒ 81 + 18d – 3d² = 105
⇒ 18d – 3d² = 24
⇒ 3d² – 18d + 24 = 0
⇒ d² – 6d + 8 = 0
⇒ d² – 2d – 4d + 8 = 0
⇒ d(d – 2) – 4(d – 2) = 0
⇒ (d – 2)*(d – 4) = 0
So,
⇒ d = 2 OR d = 4 ———-(2)
The terms when d = 2:
a – 3d = 9 – 3(2) = 9 – 6 = 3
a – d = 9 – 2 = 7
a + d = 9 + 2 = 11
a + 3d = 9 + 3(2) = 9 + 6 = 15
The terms when d = 4:
a – 3d = 9 – 3(4) = 9 – 12 = -3
a – d = 9 – 4 = 5
a + d = 9 + 4 = 13
a + 3d = 9 + 3(4) = 9 + 12 = 21
Hence, the terms are 3, 7, 11, 15 OR -3, 5, 13, 21.
Verification:
1. Sum of terms:
⇒ 3 + 7 + 11 + 15 & -3 + 5 + 13 + 21
⇒ 36
2. Product of the 2nd and the 4th term:
⇒ 7 * 15 & 5 * 21
⇒ 105
Hence verified!!!
here let the first term be a
followed by a+d,a+2d and a+3d
sn= n/2 (2a+(n-1)d)
36= 4/2(2a+3d)
18=(2a+3d)
a=18-3d/2
and now, for the product
(a+d)(a+3d)= 105
(18-3d+2d)(18-3d+6d)= 105×4
(18-d)(18+3d)= 420
324+54d-18d-3d²=420
-3d²+36+324=420
d²-12d-108=-140
d²-12d-108+140=0
d²-12d+32=0
d²-8d-4d+32= 0
d(d-8)-4(d-8)=0
(d-4)(d-8)=0
either d = 4
or d = 8
when d= 8
a= 18-3×8/2= -6/2= -3
a= -3
a2= -3+8=5
a3=-3+2×8=13
a4= -3+3×8= 21
so the numbers are -3, 5, 13 and 21
And again when d= 4
a= 18-3d/2= 18-12/2= 6/2= 3
the numbers are
a=3
a2= a+d= 3+4= 7
a3= a+2d= 3+2×4= 11
a4= a+ 3d= 3+3×4= 15