ii) cos(180° – A) + cos (180° + B) + cos(180° + C)
– sin(90° + D) = 0
friend please answer fast is urgent​

ii) cos(180° – A) + cos (180° + B) + cos(180° + C)
– sin(90° + D) = 0
friend please answer fast is urgent​

About the author
Aubrey

2 thoughts on “ii) cos(180° – A) + cos (180° + B) + cos(180° + C)<br />– sin(90° + D) = 0<br />friend please answer fast is urgent​”

  1. Step-by-step explanation:

    A,B,C and D are the angle of a cyclic quadrilateral

    ∴A+C=180

    and B+D=180

    ⇒A=180−C and B=180−D. …(1)

    we have to prove :

    cos(180−A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0

    LHS=cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)

    = −cosA+[−cosB]+[−cosC]−cosD [∵cos(180−θ)=−cosθ,sin(90 +D)=cosD]

    =−cosA−cosB−cosC−cosD

    =−cos(180 −C)−cos(180 −D)−cosC−cosD [from (1)]

    =−(−cosC)−(−cosD)−cosC−cos(D)

    =cosC+cosD−cosD−cosC

    =0

    =RHS

    ∴ cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0

    Hence proved.

    Reply
  2. [tex]\huge\mathcal{Lets \:Assume:-}[/tex]

    [tex]\implies{ABCD \:is \:a \:cyclic \:quadrilateral}[/tex]

    ➡Since, the sum of the opposite angles of a cyclic quadrilateral is supplementary,

    In quadrilateral [tex]\mathcal\red{ABCD}[/tex]

    A and C are opposite angles,

    [tex]\implies{A + C = 180}[/tex]

    [tex]\implies{A = 180 – C}[/tex]

    Similarly, B and D are opposite angles,

    [tex]B + D = 180[/tex]

    [tex]\implies{D = 180 – B}[/tex]

    [tex]\huge\mathcal\red{L.H.S}[/tex]

    [tex]cos(180+A)+cos(180-B)+cos(180-C)-sin(90-D)[/tex]

    [tex]\implies{cos(180+A)+cos(D)+cos(A)-sin(90-D)}[/tex]

    [tex]\implies{- cos A + cos D + cos A – cos D}[/tex] ( Because, cos (180±x) = – cos x and sin (90 – x) = cos x )

    [tex]\implies{0 = R.H.S}[/tex]

    [tex]\huge\mathcal\red{Hence \:Proved}[/tex]

    Reply

Leave a Comment