ii) cos(180° – A) + cos (180° + B) + cos(180° + C)– sin(90° + D) = 0friend please answer fast is urgent About the author Aubrey
Step-by-step explanation: A,B,C and D are the angle of a cyclic quadrilateral ∴A+C=180 and B+D=180 ⇒A=180−C and B=180−D. …(1) we have to prove : cos(180−A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0 LHS=cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D) = −cosA+[−cosB]+[−cosC]−cosD [∵cos(180−θ)=−cosθ,sin(90 +D)=cosD] =−cosA−cosB−cosC−cosD =−cos(180 −C)−cos(180 −D)−cosC−cosD [from (1)] =−(−cosC)−(−cosD)−cosC−cos(D) =cosC+cosD−cosD−cosC =0 =RHS ∴ cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0 Hence proved. Reply
[tex]\huge\mathcal{Lets \:Assume:-}[/tex] [tex]\implies{ABCD \:is \:a \:cyclic \:quadrilateral}[/tex] ➡Since, the sum of the opposite angles of a cyclic quadrilateral is supplementary, In quadrilateral [tex]\mathcal\red{ABCD}[/tex] A and C are opposite angles, [tex]\implies{A + C = 180}[/tex] [tex]\implies{A = 180 – C}[/tex] Similarly, B and D are opposite angles, [tex]B + D = 180[/tex] [tex]\implies{D = 180 – B}[/tex] [tex]\huge\mathcal\red{L.H.S}[/tex] [tex]cos(180+A)+cos(180-B)+cos(180-C)-sin(90-D)[/tex] [tex]\implies{cos(180+A)+cos(D)+cos(A)-sin(90-D)}[/tex] [tex]\implies{- cos A + cos D + cos A – cos D}[/tex] ( Because, cos (180±x) = – cos x and sin (90 – x) = cos x ) [tex]\implies{0 = R.H.S}[/tex] [tex]\huge\mathcal\red{Hence \:Proved}[/tex] Reply
Step-by-step explanation:
A,B,C and D are the angle of a cyclic quadrilateral
∴A+C=180
and B+D=180
⇒A=180−C and B=180−D. …(1)
we have to prove :
cos(180−A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0
LHS=cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)
= −cosA+[−cosB]+[−cosC]−cosD [∵cos(180−θ)=−cosθ,sin(90 +D)=cosD]
=−cosA−cosB−cosC−cosD
=−cos(180 −C)−cos(180 −D)−cosC−cosD [from (1)]
=−(−cosC)−(−cosD)−cosC−cos(D)
=cosC+cosD−cosD−cosC
=0
=RHS
∴ cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0
Hence proved.
[tex]\huge\mathcal{Lets \:Assume:-}[/tex]
[tex]\implies{ABCD \:is \:a \:cyclic \:quadrilateral}[/tex]
➡Since, the sum of the opposite angles of a cyclic quadrilateral is supplementary,
In quadrilateral [tex]\mathcal\red{ABCD}[/tex]
A and C are opposite angles,
[tex]\implies{A + C = 180}[/tex]
[tex]\implies{A = 180 – C}[/tex]
Similarly, B and D are opposite angles,
[tex]B + D = 180[/tex]
[tex]\implies{D = 180 – B}[/tex]
[tex]\huge\mathcal\red{L.H.S}[/tex]
[tex]cos(180+A)+cos(180-B)+cos(180-C)-sin(90-D)[/tex]
[tex]\implies{cos(180+A)+cos(D)+cos(A)-sin(90-D)}[/tex]
[tex]\implies{- cos A + cos D + cos A – cos D}[/tex] ( Because, cos (180±x) = – cos x and sin (90 – x) = cos x )
[tex]\implies{0 = R.H.S}[/tex]
[tex]\huge\mathcal\red{Hence \:Proved}[/tex]