If x+y+z=6, x-y+z=2, x+2y-z=2, then the value of Dx=________.​

If x+y+z=6, x-y+z=2, x+2y-z=2, then the value of Dx=________.​

About the author
Katherine

1 thought on “If x+y+z=6, x-y+z=2, x+2y-z=2, then the value of Dx=________.​”

  1. Answer:

    Given:

    \textsf{Equations are}Equations are

    \mathsf{x+y+z=6,\;x-y=z=2,\;x+2y-z=2}x+y+z=6,x−y=z=2,x+2y−z=2

    \underline{\textsf{To find:}}

    To find:

    \textsf{Solution by Cramer’s rule}Solution by Cramer’s rule

    \underline{\textsf{Solution:}}

    Solution:

    \begin{gathered}\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\1&-1&1\\1&2&-1\end{array}\right|}\end{gathered}

    △=

    1

    1

    1

    1

    −1

    2

    1

    1

    −1

    \mathsf{\triangle=1(1-2)-1(-1-1)+1(2+1)}△=1(1−2)−1(−1−1)+1(2+1)

    \mathsf{\triangle=-1+2+3=4}△=−1+2+3=4

    \begin{gathered}\mathsf{{\triangle}_x=\left|\begin{array}{ccc}6&1&1\\2&-1&1\\2&2&-1\end{array}\right|}\end{gathered}

    x

    =

    6

    2

    2

    1

    −1

    2

    1

    1

    −1

    \mathsf{{\triangle}_x=6(1-2)-1(-2-2)+1(4+2)}△

    x

    =6(1−2)−1(−2−2)+1(4+2)

    \mathsf{{\triangle}_x=-6+4+6=4}△

    x

    =−6+4+6=4

    \begin{gathered}\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&6&1\\1&2&1\\1&2&-1\end{array}\right|}\end{gathered}

    y

    =

    1

    1

    1

    6

    2

    2

    1

    1

    −1

    \mathsf{{\triangle}_y=1(-2-2)-6(-1-1)+1(2-2)}△

    y

    =1(−2−2)−6(−1−1)+1(2−2)

    \mathsf{{\triangle}_y=-4+12+0=8}△

    y

    =−4+12+0=8

    \begin{gathered}\mathsf{{\triangle}_z=\left|\begin{array}{ccc}1&1&6\\1&-1&2\\1&2&\end{array}\right|}\end{gathered}

    z

    =

    1

    1

    1

    1

    −1

    2

    6

    2

    \mathsf{{\triangle}_z=1(-2-4)-1(2-2)+6(2+1)}△

    z

    =1(−2−4)−1(2−2)+6(2+1)

    \mathsf{{\triangle}=-6+18=12}△=−6+18=12

    \textsf{By cramer’s rule}By cramer’s rule

    \mathsf{x=\dfrac{\triangle_x}{\triangle}=\dfrac{4}{4}=1}x=

    x

    =

    4

    4

    =1

    \mathsf{y=\dfrac{\triangle_y}{\triangle}=\dfrac{8}{4}=2}y=

    y

    =

    4

    8

    =2

    \mathsf{z=\dfrac{\triangle_z}{\triangle}=\dfrac{12}{4}=3}z=

    z

    =

    4

    12

    =3

    \therefore\textsf{The solution is (x,y,z)=(1,2,3)}∴The solution is (x,y,z)=(1,2,3)

    Reply

Leave a Comment