If y=2[x]+3 = 3[x – 2] +5 then thesum of digits of the value of[x+y] is([.] denotes G.I.F) if u do it i will mark u as brainlist, or if u keep unwanted I will report you eill be banned About the author Arya
[tex]\large\underline{\sf{Solution-}}[/tex] Given that [tex]\rm :\longmapsto\:y = 2[x] + 3 – – – (1)[/tex] and [tex]\rm :\longmapsto\:y = 3[x – 2] + 5 – – – (2)[/tex] On equating equation (1) and (2), we get [tex]\rm :\longmapsto\:2[x] + 3 = 3[x – 2] + 5 [/tex] [tex]\rm :\longmapsto\:2[x] + 3 = 3([x] – 2)+ 5 [/tex] [tex]\red{\bigg \{ \sf\because \: [x + n] = [x] + n \: \: where \: n \in \: natural \: number\bigg \}}[/tex] [tex]\rm :\longmapsto\:2[x] + 3 = 3[x] -6+ 5 [/tex] [tex]\rm :\longmapsto\:2[x] + 3 = 3[x] – 1[/tex] [tex]\rm :\implies\:[x] = 4 – – – (3)[/tex] [tex]\bf\implies \:4 \leqslant x < 5[/tex] Or [tex]\bf :\implies\:x = 4 + f \: where \: 0 < f < 1 \: is \: fractional \: part[/tex] On substituting equation (3) in equation (1), we get [tex]\rm :\longmapsto\:y = 2 \times 4 + 3 [/tex] [tex]\rm :\longmapsto\:y = 8 + 3 [/tex] [tex]\bf\implies \:y = 11 – – – (4)[/tex] Now, Consider, [tex]\rm :\longmapsto\:[x + y][/tex] [tex] \rm \: \: = \: \: [4 + f + 11][/tex] [tex] \rm \: \: = \: \: [15 + f][/tex] [tex] \rm \: \: = \: \: 15[/tex] [tex]\bf\implies \:[x + y] = 15[/tex] Additional Information :- Definition of Greatest Integer Function [tex]\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = [x] \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 \leqslant x < 1 & \sf 0 \\ \\ \sf 1 \leqslant x < 2 & \sf 1 \\ \\ \sf 2 \leqslant x < 3 & \sf 2 \end{array}} \\ \end{gathered}[/tex] [tex]\rm :\longmapsto\:[n] + [ – n] = 0 \: \: if \: n \: \in \: integer[/tex] [tex]\rm :\longmapsto\:[n] + [ – n] = – 1 \: \: if \: n \: \cancel\in \: integer[/tex] [tex]\rm :\longmapsto\:[x] \geqslant n \implies \: x \geqslant n \: \: if \: n \: \in \: integer[/tex] [tex]\rm :\longmapsto\:[x] \leqslant n \implies \: x < n + 1 \: \: if \: n \: \in \: integer[/tex] Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
[tex]\rm :\longmapsto\:y = 2[x] + 3 – – – (1)[/tex]
and
[tex]\rm :\longmapsto\:y = 3[x – 2] + 5 – – – (2)[/tex]
On equating equation (1) and (2), we get
[tex]\rm :\longmapsto\:2[x] + 3 = 3[x – 2] + 5 [/tex]
[tex]\rm :\longmapsto\:2[x] + 3 = 3([x] – 2)+ 5 [/tex]
[tex]\red{\bigg \{ \sf\because \: [x + n] = [x] + n \: \: where \: n \in \: natural \: number\bigg \}}[/tex]
[tex]\rm :\longmapsto\:2[x] + 3 = 3[x] -6+ 5 [/tex]
[tex]\rm :\longmapsto\:2[x] + 3 = 3[x] – 1[/tex]
[tex]\rm :\implies\:[x] = 4 – – – (3)[/tex]
[tex]\bf\implies \:4 \leqslant x < 5[/tex]
Or
[tex]\bf :\implies\:x = 4 + f \: where \: 0 < f < 1 \: is \: fractional \: part[/tex]
On substituting equation (3) in equation (1), we get
[tex]\rm :\longmapsto\:y = 2 \times 4 + 3 [/tex]
[tex]\rm :\longmapsto\:y = 8 + 3 [/tex]
[tex]\bf\implies \:y = 11 – – – (4)[/tex]
Now,
Consider,
[tex]\rm :\longmapsto\:[x + y][/tex]
[tex] \rm \: \: = \: \: [4 + f + 11][/tex]
[tex] \rm \: \: = \: \: [15 + f][/tex]
[tex] \rm \: \: = \: \: 15[/tex]
[tex]\bf\implies \:[x + y] = 15[/tex]
Additional Information :-
Definition of Greatest Integer Function
[tex]\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = [x] \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 \leqslant x < 1 & \sf 0 \\ \\ \sf 1 \leqslant x < 2 & \sf 1 \\ \\ \sf 2 \leqslant x < 3 & \sf 2 \end{array}} \\ \end{gathered}[/tex]
[tex]\rm :\longmapsto\:[n] + [ – n] = 0 \: \: if \: n \: \in \: integer[/tex]
[tex]\rm :\longmapsto\:[n] + [ – n] = – 1 \: \: if \: n \: \cancel\in \: integer[/tex]
[tex]\rm :\longmapsto\:[x] \geqslant n \implies \: x \geqslant n \: \: if \: n \: \in \: integer[/tex]
[tex]\rm :\longmapsto\:[x] \leqslant n \implies \: x < n + 1 \: \: if \: n \: \in \: integer[/tex]