if value of x= 3root5+2root2 and value of y=3root5–2root2 then find (x²–y²)²​

By Luna

if value of x= 3root5+2root2 and value of y=3root5–2root2 then find (x²–y²)²​

About the author
Luna

1 thought on “if value of x= 3root5+2root2 and value of y=3root5–2root2 then find (x²–y²)²​”

  1. Step-by-step explanation:

    Given :

    x = 3√5+2√2

    y = 3√5-2√2

    To find :

    Find the value of (x^2-y^2)^2 ?

    Solution:

    Given that :-

    x = 3√5+2√2 ——-(1)

    y = 3√5-2√2 ——–(2)

    Method-1:

    x = 3√5+2√2 ——-(1)

    On squaring both sides then

    => x^2 = (3√5+2√2)^2

    => x^2 = (3√5)^2+2(3√5)(2√2)+(2√2)^2

    Since (a+b)^2 = a^2+2ab+b^2

    =>x^2 = 45+12√10+8

    =>x^2 = 53+12√10———–(3)

    y = 3√5-2√2 ——–(2)

    On squaring both sides then

    => y^2 = (3√5-2√2)^2

    => y^2 = (3√5)^2-2(3√5)(2√2)+(2√2)^2

    Since (a-b)^2 = a^2-2ab+b^2

    =>y^2 = 45-12√10+8

    =>y^2 = 53-12√10———–(4)

    Now,

    (3)-(4)=>

    x^2-y^2

    =>( 53+12√10)-(53-12√10)

    => 53+12√10-53+12√10

    => (53-53)+(12√10+12√10)

    => 0+24√10

    =>x^2-y^2 = 24√10——–(5)

    Now,

    (x^2-y^2)^2

    From (5)

    => (24√10)^2

    => 24^2×(√10)^2

    => 576×10

    => 5760

    Method 2:

    Given that :-

    x = 3√5+2√2 ——-(1)

    y = 3√5-2√2 ——–(2)

    On adding (1)&(2)

    x+y = 3√5+2√2+3√5-2√2

    => x+y = 3√5+3√5

    => x+y = (3+3)√5

    x+y = 6√5———–(3)

    on Subtracting (2) from (1)

    x-y = (3√5+2√2)-(3√5-2√2)

    =>x-y = 3√5+2√2-3√5+2√2

    => x-y = 2√2+2√2

    =>x-y = (2+2)√2

    =>x-y = 4√2——–(4)

    On multiplying (3)&(4)

    =>(x+y)(x-y)

    => (6√5)(4√2)

    => (x+y)(x-y) = (6×4×√5×√2)

    => x^2-y^2 = 24√10——(5)

    Since (a+b)(a-b)=a^2-b^2

    Now ,

    (x^2-y^2)^2

    => [24√10]^2

    => 24^2×(√10)^2

    => 576×10

    => 5760

    Answer:

    The value of (x^2-y^2)^2 for the given problem is 5760

    Used formulae:

    • (a+b)^2 = a^2+2ab+b^2
    • (a-b)^2 = a^2-2ab+b^2
    • (a+b)(a-b)=a^2-b^2
    • (ab)^m = a^m × a^n
    Reply

Leave a Comment