Answer: value of k equals [tex] \frac{ \sqrt{5} }{2} [/tex] Step-by-step explanation: if the roots are equal then the discriminant ∆ = b²- 4ac = 0 [tex] { ( – 8k)}^{2} – 4(5)(4) = 0\\64 {k}^{2} – 80 = 0 \\ 64 {k}^{2} = 80 \\ {k}^{2} = \frac{80}{64} = \frac{5}{4} \\ k = \sqrt{ \frac{5}{4} } = \frac{ \sqrt{5} }{2} [/tex] Reply
Answer:
value of k equals
[tex] \frac{ \sqrt{5} }{2} [/tex]
Step-by-step explanation:
if the roots are equal then the discriminant
∆ = b²- 4ac = 0
[tex] { ( – 8k)}^{2} – 4(5)(4) = 0\\64 {k}^{2} – 80 = 0 \\ 64 {k}^{2} = 80 \\ {k}^{2} = \frac{80}{64} = \frac{5}{4} \\ k = \sqrt{ \frac{5}{4} } = \frac{ \sqrt{5} }{2} [/tex]
Answer:
k=-16
Step-by-step explanation: