If the length of a diagonal of a cube is 12 root 3 cm find its surface area and volume Spam answer will be reported :) About the author Eva
Answer: Given: Length of the diagonal of a cube is [tex]\sf 12 \sqrt{3}[/tex] cm. To find: Surface area & Volume of cube? ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━ ☯ Let side of cube be a cm. ⠀⠀⠀⠀ Now, [tex]\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\[/tex] Diagonal of cube is given by, [tex]\star\;{\boxed{\sf{\pink{Diagonal_{\:(cube)} = \sqrt{3} \times side}}}}\\ \\[/tex] [tex]:\implies\sf 12 \sqrt{3} = \sqrt{3} \times \times a\\ \\ \\ :\implies\sf a = \dfrac{12 \cancel{\sqrt{3}}}{ \cancel{\sqrt{3}}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{a = 12\:cm}}}}}\;\bigstar\\ \\[/tex] [tex]\therefore\:{\underline{\sf{Length\:of\:Side\:of\:cube\:is\: {\textsf{\textbf{12\:cm}}}.}}}[/tex] ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━ ⋆ Now, Finding Surface Area of cube, [tex]\star\;{\boxed{\sf{\pink{TSA_{\:(cube)} = 6 \times (side)^2}}}}\\ \\[/tex] [tex]:\implies\sf TSA_{\:(cube)} = 6 \times (12)^2\\ \\ \\:\implies\sf TSA_{\:(cube)} = 6 \times 12 \times 12\\ \\ \\ :\implies\sf TSA_{\:(cube)} = 6 \times 144\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{TSA_{\:(cube)} = 864\:cm^2}}}}}\;\bigstar\\ \\[/tex] [tex]\therefore\:{\underline{\sf{Surface\:area\:of\:cube\:is\: \bf{864\:cm^2}.}}}[/tex] ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━ ⋆ Now, Volume of cube, [tex]\star\;{\boxed{\sf{\pink{Volume_{\:(cube)} = (side)^3}}}}\\ \\[/tex] [tex]:\implies\sf Volume_{\:(cube)} = (12)^3\\ \\ \\ :\implies\sf Volume_{\:(cube)} = 12 \times 12 \times 12\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\:(cube)} = 1728\:cm^3}}}}}\;\bigstar\\ \\[/tex] [tex]\therefore\:{\underline{\sf{Volume\:of\:cube\:is\: \bf{1728\:cm^3}.}}}[/tex] Reply
Answer :– The surface area of cube = 864cm² The volume of cube = 1728cm³ Step-by-step explanation: To Find:– The surface area of cube The volume of cube Solution: Given that, The length of a diagonal of cube is 12√3 cm. We know that, Diagonal of cube = a√3 units, Where, a = side of cube. ∴ The side of cube :- ⟶ a√3 = Diagonal of cube ⟶ a√3 = 12√3 ⟶ a = 12cm. According the question, The surface area of cube We know that, Surface area of cube = 6(a)² sq. units, ∴ The surface area is :- ⟶ 6(a)² ⟶ 6(12)² ⟶ 6 × 144 ⟶ 864cm² The volume of cube We know that, Volume of cube = (a)³ cubic units, ∴ The volume is :- ⟶ (a)³ ⟶ (12)³ ⟶ ( 12 × 12 × 12 ) ⟶ ( 144 × 12 ) ⟶ 1728cm³ Reply
Answer:
Given: Length of the diagonal of a cube is [tex]\sf 12 \sqrt{3}[/tex] cm.
To find: Surface area & Volume of cube?
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━
☯ Let side of cube be a cm.
⠀⠀⠀⠀
Now,
[tex]\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\[/tex]
Diagonal of cube is given by,
[tex]\star\;{\boxed{\sf{\pink{Diagonal_{\:(cube)} = \sqrt{3} \times side}}}}\\ \\[/tex]
[tex]:\implies\sf 12 \sqrt{3} = \sqrt{3} \times \times a\\ \\ \\ :\implies\sf a = \dfrac{12 \cancel{\sqrt{3}}}{ \cancel{\sqrt{3}}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{a = 12\:cm}}}}}\;\bigstar\\ \\[/tex]
[tex]\therefore\:{\underline{\sf{Length\:of\:Side\:of\:cube\:is\: {\textsf{\textbf{12\:cm}}}.}}}[/tex]
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━
⋆ Now, Finding Surface Area of cube,
[tex]\star\;{\boxed{\sf{\pink{TSA_{\:(cube)} = 6 \times (side)^2}}}}\\ \\[/tex]
[tex]:\implies\sf TSA_{\:(cube)} = 6 \times (12)^2\\ \\ \\:\implies\sf TSA_{\:(cube)} = 6 \times 12 \times 12\\ \\ \\ :\implies\sf TSA_{\:(cube)} = 6 \times 144\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{TSA_{\:(cube)} = 864\:cm^2}}}}}\;\bigstar\\ \\[/tex]
[tex]\therefore\:{\underline{\sf{Surface\:area\:of\:cube\:is\: \bf{864\:cm^2}.}}}[/tex]
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━
⋆ Now, Volume of cube,
[tex]\star\;{\boxed{\sf{\pink{Volume_{\:(cube)} = (side)^3}}}}\\ \\[/tex]
[tex]:\implies\sf Volume_{\:(cube)} = (12)^3\\ \\ \\ :\implies\sf Volume_{\:(cube)} = 12 \times 12 \times 12\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{Volume_{\:(cube)} = 1728\:cm^3}}}}}\;\bigstar\\ \\[/tex]
[tex]\therefore\:{\underline{\sf{Volume\:of\:cube\:is\: \bf{1728\:cm^3}.}}}[/tex]
Answer :–
Step-by-step explanation:
To Find:–
Solution:
Given that,
We know that,
Diagonal of cube = a√3 units,
Where,
∴ The side of cube :-
⟶ a√3 = Diagonal of cube
⟶ a√3 = 12√3
⟶ a = 12cm.
According the question,
We know that,
Surface area of cube = 6(a)² sq. units,
∴ The surface area is :-
⟶ 6(a)²
⟶ 6(12)²
⟶ 6 × 144
⟶ 864cm²
We know that,
Volume of cube = (a)³ cubic units,
∴ The volume is :-
⟶ (a)³
⟶ (12)³
⟶ ( 12 × 12 × 12 )
⟶ ( 144 × 12 )
⟶ 1728cm³