If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.

By Rose

If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.

About the author
Rose

2 thoughts on “If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.<br /><br />​”

  1. Here,

    = +

    (17cm)²= +(8cm)²

    = (17cm)²(8cm)²

    p= (17+8)cm (178)cm

    = 25cm×9cm

    = 225cm²

    =15cm

    Area= 1/2 (h)

    = 1/2 (8cm×15cm)

    = 4cm×15cm

    = 60cm²

    Reply
  2. Question :

    If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.

    ⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

    ⋆ DIAGRAM :

    [tex]\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.1,2){\sf{\large{?cm}}}\put(9,0.7){\sf{\large{8cm}}}\put(9.4,1.9){\sf{\large{17 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}[/tex]

    [tex]\underline{\bigstar\:\boldsymbol{By\: Using\; Pythagoras\: Theorem :}}[/tex]

    ⠀⠀⠀⠀

    [tex]\begin{gathered}:\implies\sf (AB)^2 + (BC)^2 = (AC)^2 \\\\\\:\implies\sf (AB)^2 = (AC)^2 – (BC)^2 \\\\\\:\implies\sf (AB)^2 = (17)^2 – (8)^2 \\\\\\:\implies\sf (AB)^2 = 289 – 64 \\\\\\:\implies\sf AB^2 = 225 \\\\\\:\implies\sf AB = \sqrt{225} \\\\\\:\implies{\underline{\boxed{\sf{AB = 15\;cm}}}}\end{gathered}[/tex]

    ⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

    ◗ To find out the Area of a right angle triangle formula is given by :

    ⠀⠀

    [tex]\star\;\boxed{\sf{\pink{Area_{\:(triangle)} = \dfrac{1}{2} \times Base \times Height}}}[/tex]

    [tex]\underline{\bf{\dag} \:\mathfrak{Putting\;values\: :}}[/tex]

    ⠀⠀⠀⠀

    [tex]\begin{gathered}:\implies\sf Area_{\;(triangle)} = \dfrac{1}{\cancel{\;2}} \times \: \cancel{\;8} \; \times 15 \\\\\\:\implies\sf Area_{\;(triangle)} = 4 \times 15 \\\\\\:\implies{\underline{\boxed{\frak{\pink{Area_{\:(triangle)} = 60\;cm^2}}}}}\;\bigstar\end{gathered}[/tex]

    ⠀⠀⠀⠀

    [tex]\therefore{\underline{\sf{Hence,\;area\;of\;right\;angle\; \triangle\;is\;\bf{ 60\;cm^2}.}}}[/tex]

    Reply

Leave a Reply to Katherine Cancel reply