Given that : Area of an equilateral triangle = 36√3 cm^2 As we know that : Area of an equilateral triangle = √3/4(side)^2 ATQ : [tex] \frac{ \sqrt{3} }{4} {a}^{2} = 36 \sqrt{3} \\ \\ = > {a}^{2} = 36 \times 4 \\ \\ = > a = \sqrt{36 \times 4} \\ \\ = > a = \sqrt{6 \times 6 \times 2 \times 2} = 6 \times 2 = 12[/tex] So, the side of equilateral triangle will be 12 cm. Now, perimeter of equilateral triangle = 3 × side => Perimeter = 3 × 12 = 36 cm. ✔✔ _______________________________ Hope it helps ☺ Fóllòw Më ❤ Reply
Given that :
Area of an equilateral triangle = 36√3 cm^2
As we know that :
Area of an equilateral triangle = √3/4(side)^2
ATQ :
[tex] \frac{ \sqrt{3} }{4} {a}^{2} = 36 \sqrt{3} \\ \\ = > {a}^{2} = 36 \times 4 \\ \\ = > a = \sqrt{36 \times 4} \\ \\ = > a = \sqrt{6 \times 6 \times 2 \times 2} = 6 \times 2 = 12[/tex]
So, the side of equilateral triangle will be 12 cm.
Now, perimeter of equilateral triangle = 3 × side
=> Perimeter = 3 × 12 = 36 cm. ✔✔
_______________________________
Hope it helps ☺
Fóllòw Më ❤