Given:- Area of the Equilateral Triangle = 36√3cm² To Find:- Height of an equilateral triangle. Formula Used:- [tex]{\boxed{\bf{Area\:of\: Equilateral\: Triangle=\dfrac{\sqrt{3}}{4}a^2}}}[/tex] [tex]{\boxed{\bf{Height\:of\: Equilateral\:Triangle=\dfrac{\sqrt{3}}{2}a}}}[/tex] Solution:- Firstly, [tex]\sf :\implies\:Area=\dfrac{\sqrt{3}}{4}a^2[/tex] [tex]\sf :\implies\:36\sqrt{3}=\dfrac{\sqrt{3}}{4}a^2[/tex] [tex]\sf :\implies\:a^2=36\times4[/tex] [tex]\sf :\implies\:a^2=144[/tex] [tex]\sf :\implies\:a=\sqrt{144}[/tex] [tex]\bf :\implies\:a=12\:cm[/tex] Now, [tex]\sf :\implies\: Height=\dfrac{\sqrt{3}}{2}a[/tex] [tex]\sf :\implies\: Height=\dfrac{\sqrt{3}}{2}\times12[/tex] [tex]\bf :\implies\: Height=6\sqrt{3}\:cm[/tex] Hence, The Height of the Equilateral triangle is 6√3 cm. ━━━━━━━━━━━━━━━━━━━━━━━━━ Reply
Given:-
To Find:-
Formula Used:-
Solution:-
Firstly,
[tex]\sf :\implies\:Area=\dfrac{\sqrt{3}}{4}a^2[/tex]
[tex]\sf :\implies\:36\sqrt{3}=\dfrac{\sqrt{3}}{4}a^2[/tex]
[tex]\sf :\implies\:a^2=36\times4[/tex]
[tex]\sf :\implies\:a^2=144[/tex]
[tex]\sf :\implies\:a=\sqrt{144}[/tex]
[tex]\bf :\implies\:a=12\:cm[/tex]
Now,
[tex]\sf :\implies\: Height=\dfrac{\sqrt{3}}{2}a[/tex]
[tex]\sf :\implies\: Height=\dfrac{\sqrt{3}}{2}\times12[/tex]
[tex]\bf :\implies\: Height=6\sqrt{3}\:cm[/tex]
Hence, The Height of the Equilateral triangle is 6√3 cm.
━━━━━━━━━━━━━━━━━━━━━━━━━