If
[tex]x[/tex]
=
[tex] \sqrt{3 } \div 2[/tex]
then the value
[tex] \sqrt{1 + x} + \sqrt{1 – x} \div

If
[tex]x[/tex]
=
[tex] \sqrt{3 } \div 2[/tex]
then the value
[tex] \sqrt{1 + x} + \sqrt{1 – x} \div \sqrt{1 + x} – \sqrt{1 – x} [/tex]
of

About the author
Alaia

2 thoughts on “If <br />[tex]x[/tex]<br />=<br />[tex] \sqrt{3 } \div 2[/tex]<br />then the value<br />[tex] \sqrt{1 + x} + \sqrt{1 – x} \div”

  1. Answer:

    √3

    Step-by-step explanation:

    Let (√1+x + √1-x)/(√1+x – √1-x) = t

    Using componendo & dividendo:

    ⇒ (√1+x)/(√1-x) = (t+1)/(t-1)

    ⇒ √(1+x)/(1-x) = (t+1)/(t-1)

    ⇒ (1+x)/(1-x) = [(t+1)/(t-1)]²

    ⇒ (1 + √3/2)/(1 – √3/2) = [(t+1)/(t-1)]²

    ⇒ (2+√3)/(2-√3) = [(t+1)/(t-1)]²

    Rationalize the left hand side:

    ⇒ (2 + √3)²/1 = [(t+1)/(t-1)]²

    ⇒ (2 + √3) = (t + 1)/(t – 1)

    ⇒ x(t-1) = t+1 [let (2+√3)=x]

    ⇒ xt – x = t + 1

    ⇒ t(x – 1) = 1 + x

    ⇒ t = (1 + x)/(x – 1)

    ⇒ t = (1 + 2 + √3)/(2 + √3 – 1)

    ⇒ t = (3 + √3)/(1 + √3)

    ⇒ t = √3(√3 + 1) / (1 + √3)

    ⇒ t = √3

    As assumed (√1+x + √1-x)/(√1+x – √1-x) = t

    Hence, this is equal to √3

    Reply
  2. Let (√1+x + √1-x)/(√1+x – √1-x) = t

    Using componendo & dividendo:

    ⇒ (√1+x)/(√1-x) = (t+1)/(t-1)

    ⇒ √(1+x)/(1-x) = (t+1)/(t-1)

    ⇒ (1+x)/(1-x) = [(t+1)/(t-1)]²

    ⇒ (1 + √3/2)/(1 – √3/2) = [(t+1)/(t-1)]²

    ⇒ (2+√3)/(2-√3) = [(t+1)/(t-1)]²

    Rationalize the left hand side:

    ⇒ (2 + √3)²/1 = [(t+1)/(t-1)]²

    ⇒ (2 + √3) = (t + 1)/(t – 1)

    ⇒ x(t-1) = t+1 [let (2+√3)=x]

    ⇒ xt – x = t + 1

    ⇒ t(x – 1) = 1 + x

    ⇒ t = (1 + x)/(x – 1)

    ⇒ t = (1 + 2 + √3)/(2 + √3 – 1)

    ⇒ t = (3 + √3)/(1 + √3)

    ⇒ t = √3(√3 + 1) / (1 + √3)

    ⇒ t = √3

    As assumed (√1+x + √1-x)/(√1+x – √1-x)= t

    Hence, this is equal to √3

    Reply

Leave a Comment