If [tex]\sf A \left[\begin{array}{ccc}1&4\\ 1&-3\\\end{array}\right] and \; B\left[\begin{array}{ccc}1&2\\-1 &-1\\\end{array}\right][/tex] then find (A + B)² A² + B² Note Please don’t spam. About the author Faith
Step-by-step explanation: [tex]\sf A=\left[\begin{array}{ccc}1&4 \\ 1&-3 \end{array} \right][/tex] [tex]\\ \sf{:}\dashrightarrow A=1(-3)-1(4)[/tex] [tex]\\ \sf{:}\dashrightarrow A=-3-4[/tex] [tex]\\ \sf{:}\dashrightarrow A=-7[/tex] ______________________ [tex]\sf B=\left[\begin{array}{ccc}1& 2\\ -1& -1 \end{array} \right][/tex] [tex]\\ \sf{:}\dashrightarrow B=1(-1)-2(-1)[/tex] [tex]\\ \sf{:}\dashrightarrow B=-1-(-2)[/tex] [tex]\\ \sf{:}\dashrightarrow B=-1+2[/tex] [tex]\\ \sf{:}\dashrightarrow B=1[/tex] now, [tex]\\ \sf{:}\dashrightarrow (A+B)^2[/tex] [tex]\\ \sf{:}\dashrightarrow A^2+2AB+B^2[/tex] [tex]\\ \sf{:}\dashrightarrow (-7)^2+2(-7)(1)+(1)^2[/tex] [tex]\\ \sf{:}\dashrightarrow 49+(-14)+1[/tex] [tex]\\ \sf{:}\dashrightarrow 49-14+1[/tex] [tex]\\ \sf{:}\dashrightarrow 35+1[/tex] [tex]\\ \sf{:}\dashrightarrow 36[/tex] Again [tex]\\ \sf{:}\dashrightarrow A^2+B^2[/tex] [tex]\\ \sf{:}\dashrightarrow (A+B)^2-2AB[/tex] [tex]\\ \sf{:}\dashrightarrow 36-14[/tex] [tex]\\ \sf{:}\dashrightarrow 22[/tex] Reply
Step-by-step explanation:
[tex]\sf A=\left[\begin{array}{ccc}1&4 \\ 1&-3 \end{array} \right][/tex]
[tex]\\ \sf{:}\dashrightarrow A=1(-3)-1(4)[/tex]
[tex]\\ \sf{:}\dashrightarrow A=-3-4[/tex]
[tex]\\ \sf{:}\dashrightarrow A=-7[/tex]
______________________
[tex]\sf B=\left[\begin{array}{ccc}1& 2\\ -1& -1 \end{array} \right][/tex]
[tex]\\ \sf{:}\dashrightarrow B=1(-1)-2(-1)[/tex]
[tex]\\ \sf{:}\dashrightarrow B=-1-(-2)[/tex]
[tex]\\ \sf{:}\dashrightarrow B=-1+2[/tex]
[tex]\\ \sf{:}\dashrightarrow B=1[/tex]
now,
[tex]\\ \sf{:}\dashrightarrow (A+B)^2[/tex]
[tex]\\ \sf{:}\dashrightarrow A^2+2AB+B^2[/tex]
[tex]\\ \sf{:}\dashrightarrow (-7)^2+2(-7)(1)+(1)^2[/tex]
[tex]\\ \sf{:}\dashrightarrow 49+(-14)+1[/tex]
[tex]\\ \sf{:}\dashrightarrow 49-14+1[/tex]
[tex]\\ \sf{:}\dashrightarrow 35+1[/tex]
[tex]\\ \sf{:}\dashrightarrow 36[/tex]
Again
[tex]\\ \sf{:}\dashrightarrow A^2+B^2[/tex]
[tex]\\ \sf{:}\dashrightarrow (A+B)^2-2AB[/tex]
[tex]\\ \sf{:}\dashrightarrow 36-14[/tex]
[tex]\\ \sf{:}\dashrightarrow 22[/tex]