If
[tex]\sf A \left[\begin{array}{ccc}1&4\\ 1&-3\\\end{array}\right] and \; B\left[\begin{array}{ccc}1&2\\-1 &am

If
[tex]\sf A \left[\begin{array}{ccc}1&4\\ 1&-3\\\end{array}\right] and \; B\left[\begin{array}{ccc}1&2\\-1 &-1\\\end{array}\right][/tex]
then find
(A + B)²
A² + B²
Note
Please don’t spam.

About the author
Faith

1 thought on “If<br /> [tex]\sf A \left[\begin{array}{ccc}1&4\\ 1&-3\\\end{array}\right] and \; B\left[\begin{array}{ccc}1&2\\-1 &am”

  1. Step-by-step explanation:

    [tex]\sf A=\left[\begin{array}{ccc}1&4 \\ 1&-3 \end{array} \right][/tex]

    [tex]\\ \sf{:}\dashrightarrow A=1(-3)-1(4)[/tex]

    [tex]\\ \sf{:}\dashrightarrow A=-3-4[/tex]

    [tex]\\ \sf{:}\dashrightarrow A=-7[/tex]

    ______________________

    [tex]\sf B=\left[\begin{array}{ccc}1& 2\\ -1& -1 \end{array} \right][/tex]

    [tex]\\ \sf{:}\dashrightarrow B=1(-1)-2(-1)[/tex]

    [tex]\\ \sf{:}\dashrightarrow B=-1-(-2)[/tex]

    [tex]\\ \sf{:}\dashrightarrow B=-1+2[/tex]

    [tex]\\ \sf{:}\dashrightarrow B=1[/tex]

    now,

    [tex]\\ \sf{:}\dashrightarrow (A+B)^2[/tex]

    [tex]\\ \sf{:}\dashrightarrow A^2+2AB+B^2[/tex]

    [tex]\\ \sf{:}\dashrightarrow (-7)^2+2(-7)(1)+(1)^2[/tex]

    [tex]\\ \sf{:}\dashrightarrow 49+(-14)+1[/tex]

    [tex]\\ \sf{:}\dashrightarrow 49-14+1[/tex]

    [tex]\\ \sf{:}\dashrightarrow 35+1[/tex]

    [tex]\\ \sf{:}\dashrightarrow 36[/tex]

    Again

    [tex]\\ \sf{:}\dashrightarrow A^2+B^2[/tex]

    [tex]\\ \sf{:}\dashrightarrow (A+B)^2-2AB[/tex]

    [tex]\\ \sf{:}\dashrightarrow 36-14[/tex]

    [tex]\\ \sf{:}\dashrightarrow 22[/tex]

    Reply

Leave a Comment