if [tex] \alpha \: and \beta are \: the \: zeroes \: of \: the \: polynomial \: p(x) = x ^{2} – 2x + 3 \: find \: a \: quadratic \: polynomial \: whose \: zeroes \: are \: \alpha – 1 \div \alpha + 1[/tex] About the author Lyla
Answer: f(x)=x2−2x+3 have zeroes α,β ⇒α+β=2 ⇒α⋅β=3 Now polynomial having α+2,β+2 as roots is p(x)=x2−(α+2+β+2)x+(α+2)(β+2) =x2−(α+β+4)x+αβ+2(α+β)+4 =x2−(2+4)x+3+2(2)+4 ⇒x2−6x+11 Reply
Answer:
f(x)=x2−2x+3 have zeroes α,β
⇒α+β=2
⇒α⋅β=3
Now polynomial having α+2,β+2 as roots is
p(x)=x2−(α+2+β+2)x+(α+2)(β+2)
=x2−(α+β+4)x+αβ+2(α+β)+4
=x2−(2+4)x+3+2(2)+4
⇒x2−6x+11