if [tex]x {}^{2} + y { }^{2} = 13[/tex]and[tex]xy = 2[/tex]then find the value of [tex]x – y = a[/tex] About the author Vivian
Answer: Given \begin{gathered}x {}^{2} + y {}^{2} = 13 \\ xy = 2 \\ so \: \: \: 2xy = 4 \\ now \: \: \: x {}^{2} + y {}^{2} – 2xy = 13 – 4 \\ (x – y) {}^{2} = 9 \\ x – y = \sqrt{9} \\ x – y = a= + 3 \: or \: – 3\end{gathered} x 2 +y 2 =13 xy=2 so2xy=4 nowx 2 +y 2 −2xy=13−4 (x−y) 2 =9 x−y= 9 x−y=a=+3or−3 Reply
Answer: Given [tex]x {}^{2} + y {}^{2} = 13 \\ xy = 2 \\ so \: \: \: 2xy = 4 \\ now \: \: \: x {}^{2} + y {}^{2} – 2xy = 13 – 4 \\ (x – y) {}^{2} = 9 \\ x – y = \sqrt{9} \\ x – y = a= + 3 \: or \: – 3[/tex] Reply
Answer:
Given
\begin{gathered}x {}^{2} + y {}^{2} = 13 \\ xy = 2 \\ so \: \: \: 2xy = 4 \\ now \: \: \: x {}^{2} + y {}^{2} – 2xy = 13 – 4 \\ (x – y) {}^{2} = 9 \\ x – y = \sqrt{9} \\ x – y = a= + 3 \: or \: – 3\end{gathered}
x
2
+y
2
=13
xy=2
so2xy=4
nowx
2
+y
2
−2xy=13−4
(x−y)
2
=9
x−y=
9
x−y=a=+3or−3
Answer:
Given
[tex]x {}^{2} + y {}^{2} = 13 \\ xy = 2 \\ so \: \: \: 2xy = 4 \\ now \: \: \: x {}^{2} + y {}^{2} – 2xy = 13 – 4 \\ (x – y) {}^{2} = 9 \\ x – y = \sqrt{9} \\ x – y = a= + 3 \: or \: – 3[/tex]