If tanA = 30°, prove that
[tex] \tan2a = \frac{2 \tan a }{1 – { \tan}^{2} a} [/tex]

If tanA = 30°, prove that
[tex] \tan2a = \frac{2 \tan a }{1 – { \tan}^{2} a} [/tex]

About the author
Genesis

2 thoughts on “If tanA = 30°, prove that<br />[tex] \tan2a = \frac{2 \tan a }{1 – { \tan}^{2} a} [/tex]<br />​”

  1. A=30⇒2A=60

    tan2A=1−tan2A2tanA.

    A=30 degrees

    Show that:

    tan60∘=1−tan230∘2tan30∘

    RHS:

    1−tan230∘2tan30∘=1−312×31=2/32/3

    =3/3

    Reply

Leave a Comment