Step-by-step explanation: Given [tex] \tan(a) = \frac{p}{b} = \frac{3}{4} [/tex] By pytagoras theorem [tex] {h}^{2} = { p}^{2} + {b}^{2} [/tex] [tex] {h}^{2} = {3}^{2} + {4}^{2} [/tex] [tex] {h}^{2} = 9 + 16[/tex] [tex]h = \sqrt{25} [/tex] [tex]h = 5[/tex] Now, [tex] \frac{ {5}^{2} }{ {4}^{2} } + 2 \times \frac{ {3}^{2} }{ {4}^{2} } [/tex] [tex] \frac{25}{16} + 2 \times \frac{9}{16} [/tex] [tex] \frac{25}{16} \times \frac{9}{8} [/tex] [tex] \frac{225}{128} [/tex] Reply
Step-by-step explanation:
Given
[tex] \tan(a) = \frac{p}{b} = \frac{3}{4} [/tex]
By pytagoras theorem
[tex] {h}^{2} = { p}^{2} + {b}^{2} [/tex]
[tex] {h}^{2} = {3}^{2} + {4}^{2} [/tex]
[tex] {h}^{2} = 9 + 16[/tex]
[tex]h = \sqrt{25} [/tex]
[tex]h = 5[/tex]
Now,
[tex] \frac{ {5}^{2} }{ {4}^{2} } + 2 \times \frac{ {3}^{2} }{ {4}^{2} } [/tex]
[tex] \frac{25}{16} + 2 \times \frac{9}{16} [/tex]
[tex] \frac{25}{16} \times \frac{9}{8} [/tex]
[tex] \frac{225}{128} [/tex]