Answer: Correct option is A 1−n 1+n tanα sinθ=nsin(θ+2α) sin(θ+2α) sinθ =n apply componendo dividendo rule, sinθ−sin(θ+2α) sinθ+sin(θ+2α) = n−1 n+1 apply sinC+sinD and sinC−sinD 2sinαcos(θ+α) 2sin(θ+α)cosα = n−1 n+1 tanα tan(θ+α) = n−1 n+1 tan(θ+α)= n−1 n+1 tanα Reply
Answer:
Correct option is
A
1−n
1+n
tanα
sinθ=nsin(θ+2α)
sin(θ+2α)
sinθ
=n
apply componendo dividendo rule,
sinθ−sin(θ+2α)
sinθ+sin(θ+2α)
=
n−1
n+1
apply sinC+sinD and sinC−sinD
2sinαcos(θ+α)
2sin(θ+α)cosα
=
n−1
n+1
tanα
tan(θ+α)
=
n−1
n+1
tan(θ+α)=
n−1
n+1
tanα