if sides of a triangle are in ratio 3:5:7 . Find the area of triangle whose perimeter is 142.5 About the author Charlie
Let the sides of the triangle be 3x, 5x and 7x and we’ve Perimeter of triangle as 142.5 so:- Ratio of sides = 3:5:7 [tex] \colon\implies{\pmb{\sf{ Perimeter_{( \Delta )} = a+b+c }}} \\ \\ \colon\implies{\sf{ 142.5 = 3x+5x+7x }} \\ \\ \\ \colon\implies{\sf{ \cancel{142.5} = \cancel{15}x }} \\ \\ \\ \colon\implies{\sf{ x = 9.5}} \\ [/tex] Therefore, three Sides are 28.5 , 47.5 and 66.5 Now, We also Know that we’ve to find the Area of the triangle using Heron‘s Formula as:- [tex] \maltese \ {\blue{\pmb{\underline{\boxed{\sf{ Area _ {( \Delta )} = \sqrt{ s(s-a)(s-b)(s-c) } }}}}}} \\ \\ \colon\implies{\sf{Where, s = \dfrac{a+b+c}{2} }} \\ \\ \colon\implies{\sf{ s = \dfrac{28.5+47.5+66.5}{2} }} \\ \\ \colon\implies{\sf{ s = \dfrac{142.5}{2} }} \\ \\ \colon\implies{\sf{ s = 71.25 }} \\ \\ \\ \colon\implies{\sf{ Now, Area _ {( \Delta )} = \sqrt{ 71.25(71.25-28.5)(71.25-47.5)(71.25-66.5) } }} \\ \\ \\ \colon\implies{\sf{ Area _ {( \Delta )} = \sqrt{ 71.25(42.75)(23.75)(4.75) } }} \\ \\ \\ \colon\implies{\sf{ Area _ {( \Delta )} = \sqrt{ 71.25 \times 42.75 \times 23.75 \times 4.75 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = \sqrt{ 343619.82 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 586.19 \ unit^2 }} \\ [/tex] Hence, The Area of the ∆ will be 586.19 unit². Reply
Let the sides of the triangle be 3x, 5x and 7x and we’ve Perimeter of triangle as 142.5 so:-
[tex] \colon\implies{\pmb{\sf{ Perimeter_{( \Delta )} = a+b+c }}} \\ \\ \colon\implies{\sf{ 142.5 = 3x+5x+7x }} \\ \\ \\ \colon\implies{\sf{ \cancel{142.5} = \cancel{15}x }} \\ \\ \\ \colon\implies{\sf{ x = 9.5}} \\ [/tex]
Therefore,
Now, We also Know that we’ve to find the Area of the triangle using Heron‘s Formula as:-
[tex] \maltese \ {\blue{\pmb{\underline{\boxed{\sf{ Area _ {( \Delta )} = \sqrt{ s(s-a)(s-b)(s-c) } }}}}}} \\ \\ \colon\implies{\sf{Where, s = \dfrac{a+b+c}{2} }} \\ \\ \colon\implies{\sf{ s = \dfrac{28.5+47.5+66.5}{2} }} \\ \\ \colon\implies{\sf{ s = \dfrac{142.5}{2} }} \\ \\ \colon\implies{\sf{ s = 71.25 }} \\ \\ \\ \colon\implies{\sf{ Now, Area _ {( \Delta )} = \sqrt{ 71.25(71.25-28.5)(71.25-47.5)(71.25-66.5) } }} \\ \\ \\ \colon\implies{\sf{ Area _ {( \Delta )} = \sqrt{ 71.25(42.75)(23.75)(4.75) } }} \\ \\ \\ \colon\implies{\sf{ Area _ {( \Delta )} = \sqrt{ 71.25 \times 42.75 \times 23.75 \times 4.75 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = \sqrt{ 343619.82 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 586.19 \ unit^2 }} \\ [/tex]
Hence,
The Area of the ∆ will be 586.19 unit².