If sec x + tan x = p. Find value of sec x and tan x in terms of p.​

If sec x + tan x = p. Find value of sec x and tan x in terms of p.​

About the author
Vivian

1 thought on “If sec x + tan x = p. Find value of sec x and tan x in terms of p.​”

  1. [tex]\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{secx + tanx = p} \end{cases}\end{gathered}\end{gathered}[/tex]

    [tex]\begin{gathered}\begin{gathered}\bf \: To \: Find – \begin{cases} &\sf{secx}\\ &\sf{tanx}\end{cases}\end{gathered}\end{gathered}[/tex]

    [tex]\large\underline{\sf{Solution-}}[/tex]

    Given that,

    [tex]\rm :\longmapsto\:secx + tanx = p – – – (1)[/tex]

    We know that,

    [tex]\rm :\longmapsto\: {sec}^{2} x – {tan}^{2} x = 1[/tex]

    [tex]\rm :\longmapsto\:(secx + tanx)(secx – tanx) = 1[/tex]

    [tex]\rm :\longmapsto\:p(secx – tanx) = 1 \: \: \: \: \: \: \: \{ \: using \: (1) \}[/tex]

    [tex]\rm :\implies\:secx – tanx = \dfrac{1}{p} – – – (2) [/tex]

    On adding equation (1) and equation (2), we get

    [tex]\rm :\longmapsto\:2secx = p + \dfrac{1}{p} [/tex]

    [tex]\rm :\longmapsto\:2secx = \dfrac{ {p}^{2} + 1}{p} [/tex]

    [tex]\rm :\implies\: \boxed{\bf\:secx = \dfrac{ {p}^{2} + 1}{2p} }[/tex]

    On Subtracting equation (2) from equation (1), we get

    [tex]\rm :\longmapsto\:2tanx = p – \dfrac{1}{p} [/tex]

    [tex]\rm :\longmapsto\:2tanx = \dfrac{ {p}^{2} – 1}{p} [/tex]

    [tex]\rm :\implies\: \boxed{\bf\:tanx = \dfrac{ {p}^{2} – 1}{2p}} [/tex]

    Additional Information:-

    Relationship between sides and T ratios

    sin θ = Opposite Side/Hypotenuse

    cos θ = Adjacent Side/Hypotenuse

    tan θ = Opposite Side/Adjacent Side

    sec θ = Hypotenuse/Adjacent Side

    cosec θ = Hypotenuse/Opposite Side

    cot θ = Adjacent Side/Opposite Side

    Reciprocal Identities

    cosec θ = 1/sin θ

    sec θ = 1/cos θ

    cot θ = 1/tan θ

    sin θ = 1/cosec θ

    cos θ = 1/sec θ

    tan θ = 1/cot θ

    Co-function Identities

    sin (90°−x) = cos x

    cos (90°−x) = sin x

    tan (90°−x) = cot x

    cot (90°−x) = tan x

    sec (90°−x) = cosec x

    cosec (90°−x) = sec x

    Fundamental Trigonometric Identities

    sin²θ + cos²θ = 1

    sec²θ – tan²θ = 1

    cosec²θ – cot²θ = 1

    Reply

Leave a Comment