2 thoughts on “If (Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) . Prove that each of the side is”
Answer:
★GIVEN:-
\sf{(Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) }(SecA+tanA)(SecB+tanB)(SecC+tanC)=(SecA−tanA)(SecB−tanB)(SecC−tanC)
★TO PROVE:-
each of the side is equal to ±1
★FORMULA USED:-
\sf{Sec^2x – Tan ^2x =1}Sec
2
x−Tan
2
x=1
★LET:-
(Sec A + tan A ) (SecB + tanB) (Sec C + tanC)——–(1)
(Sec A -tanA) (Sec B – tan B) (Sec C – tan C )————–(2)
★SOLUTION:-
Multiply Eqs (1) and (2) we get,
\sf{ (Sec^2A – Tan^2A)(Sec^2B – Tan ^2 B )( Sec ^2 C – Tan ^2 C ) = 1}(Sec
2
A−Tan
2
A)(Sec
2
B−Tan
2
B)(Sec
2
C−Tan
2
C)=1
\sf{[(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C )]^2 = 1}[(SecA−TanA)(SecB−TanB)(SecC−TanC)]
2
=1
\sf{(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C ) = \pm \: 1}(SecA−TanA)(SecB−TanB)(SecC−TanC)=±1
Answer:
★GIVEN:-
\sf{(Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) }(SecA+tanA)(SecB+tanB)(SecC+tanC)=(SecA−tanA)(SecB−tanB)(SecC−tanC)
★TO PROVE:-
each of the side is equal to ±1
★FORMULA USED:-
\sf{Sec^2x – Tan ^2x =1}Sec
2
x−Tan
2
x=1
★LET:-
(Sec A + tan A ) (SecB + tanB) (Sec C + tanC)——–(1)
(Sec A -tanA) (Sec B – tan B) (Sec C – tan C )————–(2)
★SOLUTION:-
Multiply Eqs (1) and (2) we get,
\sf{ (Sec^2A – Tan^2A)(Sec^2B – Tan ^2 B )( Sec ^2 C – Tan ^2 C ) = 1}(Sec
2
A−Tan
2
A)(Sec
2
B−Tan
2
B)(Sec
2
C−Tan
2
C)=1
\sf{[(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C )]^2 = 1}[(SecA−TanA)(SecB−TanB)(SecC−TanC)]
2
=1
\sf{(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C ) = \pm \: 1}(SecA−TanA)(SecB−TanB)(SecC−TanC)=±1
HENCE, each of the side is equal to ±1
Answer:
Please thank my all answers hiiiiiiihiiiiiiiiiiiiiiii