If (Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) . Prove that each of the side is

If (Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) . Prove that each of the side is equal to ±1 .

❒ Best Of Luck !!
❒Spammers Stay Away !!​

About the author
Sarah

2 thoughts on “If (Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) . Prove that each of the side is”

  1. Answer:

    ★GIVEN:-

    \sf{(Sec A + tan A ) (SecB + tanB) (Sec C + tanC) = (Sec A -tanA) (Sec B – tan B) (Sec C – tan C ) }(SecA+tanA)(SecB+tanB)(SecC+tanC)=(SecA−tanA)(SecB−tanB)(SecC−tanC)

    ★TO PROVE:-

    each of the side is equal to ±1

    ★FORMULA USED:-

    \sf{Sec^2x – Tan ^2x =1}Sec

    2

    x−Tan

    2

    x=1

    ★LET:-

    (Sec A + tan A ) (SecB + tanB) (Sec C + tanC)——–(1)

    (Sec A -tanA) (Sec B – tan B) (Sec C – tan C )————–(2)

    ★SOLUTION:-

    Multiply Eqs (1) and (2) we get,

    \sf{ (Sec^2A – Tan^2A)(Sec^2B – Tan ^2 B )( Sec ^2 C – Tan ^2 C ) = 1}(Sec

    2

    A−Tan

    2

    A)(Sec

    2

    B−Tan

    2

    B)(Sec

    2

    C−Tan

    2

    C)=1

    \sf{[(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C )]^2 = 1}[(SecA−TanA)(SecB−TanB)(SecC−TanC)]

    2

    =1

    \sf{(Sec A – Tan A)(Sec B – Tan B )(Sec C – Tan C ) = \pm \: 1}(SecA−TanA)(SecB−TanB)(SecC−TanC)=±1

    HENCE, each of the side is equal to ±1

    Reply

Leave a Comment