If p + q +r = 2, p²+ q² + r² = 30 and pqr = 10, then the value of (1 – p) (1 – q)(1 – r) will be ???

be

[NSE

By Jade

If p + q +r = 2, p²+ q² + r² = 30 and pqr = 10, then the value of (1 – p) (1 – q)(1 – r) will be ???

be

[NSEJS 2017-18]

Options:

A. -18

B.-24

C. -27

D. -35

About the author
Jade

2 thoughts on “If p + q +r = 2, p²+ q² + r² = 30 and pqr = 10, then the value of (1 – p) (1 – q)(1 – r) will be ???<br /><br />be<br /><br />[NSE”

  1. [tex] \: {\boxed{\underline{\tt{ \orange{Required \: \: answer \: \: is \: \: as \: \: follows:-}}}}}[/tex]

    Option (B) — ( 24 )

    ★GIVEN:-

    • [tex] \sf{p+q+r = 2}[/tex]
    • [tex] \sf{ {p}^{2} + {q}^{2} + {r}^{2} = 30 }[/tex]

    • [tex] \sf{pqr = 10}[/tex]

    TO FIND:-

    • [tex] \sf{(1 – p) (1 – q)(1 – r)}[/tex]

    ★SOLUTION:-

    [tex] : \longrightarrow \displaystyle \sf{(1 – p) (1 – q)(1 – r)}[/tex]

    [tex] : \longrightarrow \displaystyle \sf{(1 – r)(1 – q – p + pq)}[/tex]

    [tex] :\longrightarrow\displaystyle\sf{1 – q – p + pq – r + rq + rp – rpq} \\ \\ :\longrightarrow\displaystyle\sf{1 – p – q – r + pq + rq + rp – rpq} \\ \\ :\longrightarrow\displaystyle\sf{1 – (p + q + r) + pq + rq + rp – rpq━━(1)} \\ \\ :\longrightarrow\displaystyle\sf{ {(p + q + r)}^{2} = {p}^{2} + {q}^{2} + {r}^{2} + 2(pq + rq + rp) } \\ \\ :\longrightarrow\displaystyle\sf{4 = 30 + 2(pq + rq + rp)} \\ \\ :\longrightarrow\displaystyle\sf{ – 26 = 2(pq + rq + rp)} \\ \\:\longrightarrow\displaystyle\sf{ (pq + rq + rp) = – 13━━(2)} \\ \\ \displaystyle\sf{ put \: value \: of \: (2) \: in \: (1)} \\ \\ : \longrightarrow \displaystyle \sf{1 – 2 – 13 – 10} \\ \\ { \boxed{ \underline{ \pink{ \huge{ – 24}}}}}[/tex]

    Reply
  2. Recall the expansion of a cubic polynomial having roots p, q and r.

    [tex]\longrightarrow(x-p)(x-q)(x-r)=x^3-(p+q+r)x^2+(pq+qr+rp)x-pqr[/tex]

    Taking [tex]x=1,[/tex]

    [tex]\longrightarrow(1-p)(1-q)(1-r)=1-(p+q+r)+(pq+qr+rp)-pqr[/tex]

    We’re given,

    • [tex]p+q+r=2\quad\quad\dots(1)[/tex]
    • [tex]p^2+q^2+r^2=30\quad\quad\dots(2)[/tex]
    • [tex]pqr=10\quad\quad\dots(3)[/tex]

    Squaring (1),

    [tex]\longrightarrow (p+q+r)^2=2^2[/tex]

    [tex]\longrightarrow p^2+q^2+r^2+2(pq+qr+rp)=4[/tex]

    From (2),

    [tex]\longrightarrow 30+2(pq+qr+rp)=4[/tex]

    [tex]\longrightarrow pq+qr+rp=-13[/tex]

    Now,

    [tex]\longrightarrow(1-p)(1-q)(1-r)=1-(p+q+r)+(pq+qr+rp)-pqr[/tex]

    [tex]\longrightarrow(1-p)(1-q)(1-r)=1-2-13-10[/tex]

    [tex]\longrightarrow\underline{\underline{(1-p)(1-q)(1-r)=-24}}[/tex]

    Hence (B) is the answer.

    Reply

Leave a Comment