.If p and q are zeroes of x2 + 5x + 8, find p+q
please help me​

.If p and q are zeroes of x2 + 5x + 8, find p+q
please help me​

About the author
Madelyn

2 thoughts on “.If p and q are zeroes of x2 + 5x + 8, find p+q<br />please help me​”

  1. ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN POLYNOMIAL : x² + 5x + 8

    Given that ,

    ⠀⠀⠀⠀⠀⠀⠀p and q are zeroes of Polynomial .

    ⠀⠀⠀⠀⠀⠀⠀Finding value of p + q :

    [tex]\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar\:\:\bf Sum \:of \: zeroes\:\:: [/tex]

    [tex]\qquad \dag\:\:\bigg\lgroup \sf{ p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} }\bigg\rgroup \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:}\\ \\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ 5 \:)\:}{ 1 \:} \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: – 5 \:\:}{ 1 \:} \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \: – 5 \:\: \\\\[/tex]

    [tex]\qquad \dashrightarrow \underline{\pmb{\purple{\:p + q \: \: = \:\: \: – 5 \:\:\: }} }\:\bigstar \\\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence,\:The\:value \:of\: p + q \:is\:\bf -5 }.}\\\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ⠀⠀⠀⠀⠀[tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]

    [tex]\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}} [/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply
  2. [tex]\huge\bf\fbox\red{Answer:-}[/tex]

    ⠀☆ GIVEN POLYNOMIAL : x² + 5x + 8

    Given that ,

    ⠀⠀⠀⠀⠀⠀⠀p and q are zeroes of Polynomial .

    ⠀⠀⠀⠀⠀⠀⠀Finding value of p + q :

    [tex]\begin{gathered}\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar\:\:\bf Sum \:of \: zeroes\:\:: \end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{ p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} }\bigg\rgroup \\\\\end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:}\\ \\\end{gathered}[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ Cofficient \:of \:x \:)\:}{Cofficient\:of\:x^2 \:} \\\\\end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: -( \ 5 \:)\:}{ 1 \:} \\\\\end{gathered} [/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \dfrac{\: – 5 \:\:}{ 1 \:} \\\\\end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \:\sf p + q \: \: = \:\: \: – 5 \:\: \\\\\end{gathered}[/tex]

    [tex]\begin{gathered}\qquad \dashrightarrow \underline{\pmb{\purple{\:p + q \: \: = \:\: \: – 5 \:\:\: }} }\:\bigstar \\\\\end{gathered}[/tex]

    ⠀⠀⠀⠀⠀[tex]\begin{gathered}\therefore {\underline{ \sf \:Hence,\:The\:value \:of\: p + q \:is\:\bf -5 }.}\\\\\end{gathered}[/tex]

    Reply

Leave a Comment