If P(A)= 2/5 P(B)=1/5 find P(AUB) if A & B are independent events. give the answer as soon as possible About the author Julia
Answer: Answer P(A)=1/2,P(B)=p P(AUB)=3/5 i) Mutually exclusive P(A∩B)=0 P(AUB)=P(A)+P(B)-P(A∩B) 3/5=1/2+p-0 p=1/10 ii)Independent events P(A∩B)=P(A)*P(B)=p/2 P(AUB)=P(A)+P(B)-P(A∩B) 3/5=1/2+p-p/2 p=1/5 Step-by-step explanation: Answer P(A)=1/2,P(B)=p P(AUB)=3/5 i) Mutually exclusive P(A∩B)=0 P(AUB)=P(A)+P(B)-P(A∩B) 3/5=1/2+p-0 p=1/10 ii)Independent events P(A∩B)=P(A)*P(B)=p/2 P(AUB)=P(A)+P(B)-P(A∩B) 3/5=1/2+p-p/2 p=1/5 Reply
Answer:
Answer
P(A)=1/2,P(B)=p
P(AUB)=3/5
i) Mutually exclusive P(A∩B)=0
P(AUB)=P(A)+P(B)-P(A∩B)
3/5=1/2+p-0
p=1/10
ii)Independent events P(A∩B)=P(A)*P(B)=p/2
P(AUB)=P(A)+P(B)-P(A∩B)
3/5=1/2+p-p/2
p=1/5
Step-by-step explanation:
Answer
P(A)=1/2,P(B)=p
P(AUB)=3/5
i) Mutually exclusive P(A∩B)=0
P(AUB)=P(A)+P(B)-P(A∩B)
3/5=1/2+p-0
p=1/10
ii)Independent events P(A∩B)=P(A)*P(B)=p/2
P(AUB)=P(A)+P(B)-P(A∩B)
3/5=1/2+p-p/2
p=1/5