If f(x)=5×3+4×2−13x−25f(x)=5×3+4×2−13x−25 and f(x−3)=5×3−41×2+98x+kf(x−3)=5×3−41×2+98x+k , then k= About the author Isabella
Answer: K = -229 Step-by-step explanation: f(x)= 5×3+4×2−13x−25 → (1) f(x−3)=5×3−41×2+98x+k → (2) # apply x = 0 in (1) so, f(0) = 5×3+4×2−13(0)−25 f(0) = 15 + 8 – 0 – 25 f(0) = 23- 25 f(0) = -2 → (3) # apply x = 3 in (2) so, f(3-3) = 5×3−41×2+98(3)+k f(0) = 15 – 82 + 294 + k f(0) = 227 + k →(4) # compare (3) and (4) so, 227 + k = -2 k = -2 -227 k = -229 Reply
Answer:
K = -229
Step-by-step explanation:
f(x)= 5×3+4×2−13x−25 → (1)
f(x−3)=5×3−41×2+98x+k → (2)
# apply x = 0 in (1)
so,
f(0) = 5×3+4×2−13(0)−25
f(0) = 15 + 8 – 0 – 25
f(0) = 23- 25
f(0) = -2 → (3)
# apply x = 3 in (2)
so,
f(3-3) = 5×3−41×2+98(3)+k
f(0) = 15 – 82 + 294 + k
f(0) = 227 + k →(4)
# compare (3) and (4)
so,
227 + k = -2
k = -2 -227
k = -229