If f(x) = x + 3 4x – 5 , g(x) = 3 + 5x 4x – 1 then show that (fog) (x) = x. About the author Brielle
(tex) ғ(x)=(x+)/(x-) ɢ(x)=(+x)/(x-) ғ.ɢ(x)=ғ{ɢ(x)} =ғ{+x/x-} ={(+x)/(x-)+}/{(+x)/(x-)-} ={(+x+x-)/+x-x+}(/tex) Reply
[tex]\huge \sf \bf {\boxed{\underline {\red{\underline {✠Aɴʂᴡᴇʀ࿐ :−}}}}} [/tex] (tex) ғ(x)=(x+)/(x-) ɢ(x)=(+x)/(x-) ᴛʜᴇɴ, ғ.ɢ(x)=ғ{ɢ(x)} =ғ{+x/x-} ={(+x)/(x-)+}/{(+x)/(x-)-} ={(+x+x-)/+x-x+}(/tex) Reply
(tex) ғ(x)=(x+)/(x-)
ɢ(x)=(+x)/(x-)
ғ.ɢ(x)=ғ{ɢ(x)}
=ғ{+x/x-}
={(+x)/(x-)+}/{(+x)/(x-)-}
={(+x+x-)/+x-x+}(/tex)
[tex]\huge \sf \bf {\boxed{\underline {\red{\underline {✠Aɴʂᴡᴇʀ࿐ :−}}}}} [/tex]
(tex) ғ(x)=(x+)/(x-)
ɢ(x)=(+x)/(x-)
ᴛʜᴇɴ,
ғ.ɢ(x)=ғ{ɢ(x)}
=ғ{+x/x-}
={(+x)/(x-)+}/{(+x)/(x-)-}
={(+x+x-)/+x-x+}(/tex)