If diagonal of a square is 13 cm then find its side.Ratio of two adiacent sides About the author Peyton
Appropriate Question : If diagonal of a square is 13 cm then find the side of a Square . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Given : The Diagonal of Square is 13 cm . Need To Find : Length of Side of Square. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\dag\:\;\frak {\underline { As,\:We\:know\:that\::}}\\\\[/tex] [tex]\dag\:\:\boxed {\sf{ Diagonal_{(Square)} =\bigg( \sqrt {2} a\bigg) }}\\\\[/tex] Where, a is the Side of Square. ⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex] :\implies\sf{13 = \sqrt {2} a}\\\\ :\implies\sf{a= \dfrac{13}{\sqrt{2}}}\\\\:\implies\sf{a= \dfrac{13\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}}\\\\:\implies\sf{a= \dfrac{13\sqrt{2}}{2}}\\\\:\implies\sf{a= \dfrac{\cancel {13}\sqrt{2}}{\cancel {2}}}\\\\\qquad \quad \underline {\boxed{\purple{ \frak { a = 6.5\sqrt {2}\: cm}}}}\:\bf{\bigstar}\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\:Side \:of\:Square \:is\:\bf{6.5\sqrt {2}\: cm}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
✩ We know that : Diagonal of 3 square is given as 13 cm. ✩ Let a be the side of the square. Diagonal = 13 [tex] \large \sf = \sqrt{2a} = 13[/tex] [tex] \large \sf a \: = \frac{13}{ \sqrt{2} } [/tex] [tex]\large \sf a = \frac{13 \sqrt{2} }{2} [/tex] [tex]\large \sf a \: = 6.5 \sqrt{2} cm[/tex] [tex]\large{\underline{\boxed{\mathfrak\pink{a \: = 6.5 \sqrt{2} \: cm}}}}[/tex] Therefore, the length of the side of the square is 6 . Reply
Appropriate Question :
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Given : The Diagonal of Square is 13 cm .
Need To Find : Length of Side of Square.
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\dag\:\;\frak {\underline { As,\:We\:know\:that\::}}\\\\[/tex]
[tex]\dag\:\:\boxed {\sf{ Diagonal_{(Square)} =\bigg( \sqrt {2} a\bigg) }}\\\\[/tex]
Where,
⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex] :\implies\sf{13 = \sqrt {2} a}\\\\ :\implies\sf{a= \dfrac{13}{\sqrt{2}}}\\\\:\implies\sf{a= \dfrac{13\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}}\\\\:\implies\sf{a= \dfrac{13\sqrt{2}}{2}}\\\\:\implies\sf{a= \dfrac{\cancel {13}\sqrt{2}}{\cancel {2}}}\\\\\qquad \quad \underline {\boxed{\purple{ \frak { a = 6.5\sqrt {2}\: cm}}}}\:\bf{\bigstar}\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\:Side \:of\:Square \:is\:\bf{6.5\sqrt {2}\: cm}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
✩ We know that :
Diagonal of 3 square is given as 13 cm.
✩ Let a be the side of the square.
Diagonal = 13
[tex] \large \sf = \sqrt{2a} = 13[/tex]
[tex] \large \sf a \: = \frac{13}{ \sqrt{2} } [/tex]
[tex]\large \sf a = \frac{13 \sqrt{2} }{2} [/tex]
[tex]\large \sf a \: = 6.5 \sqrt{2} cm[/tex]
[tex]\large{\underline{\boxed{\mathfrak\pink{a \: = 6.5 \sqrt{2} \: cm}}}}[/tex]
Therefore, the length of the side of the square is 6 .