if c=a/b-d-e/f-d,find the value of f when a=3,b=4 c=-6,d=-5,e=2​

if c=a/b-d-e/f-d,find the value of f when a=3,b=4 c=-6,d=-5,e=2​

About the author
Madeline

1 thought on “if c=a/b-d-e/f-d,find the value of f when a=3,b=4 c=-6,d=-5,e=2​”

  1. Step-by-step explanation:

    f={8/67} (decimal: .119403 to 6d. p)

    PREMISES

    The cardinal value of “f” in the equation c=a/b-d-e/f-d, where a=3, b=4 c=-6, d=-5, and e=2

    CALCULATIONS

    For the equation c=a/b-d-e/f-d, the cardinal value of the independent variable “f” can be calculated by deduction, where a=3, b=4, c=-6, d=-5, and e=2

    Hence,

    The mathematical proposition c=a/b-d-e/f-d becomes

    -6=3/4-(-5)-2/f-(-5)

    -6=3/4+5–2/f+5

    -6–5–5=3/4+(5–5)-2/f+(5–5)

    -16=3/4+0–2/f+0

    -16=3/4–2/f

    -16–3/4=(3/4–3/4)-2/f

    (-16 3/4)=0–2/f

    (-16 3/4)=-2/f (Eliminate the fractions by multiplying both sides of the equation by the least common denominator 4×f=4f)

    4f[(-16 3/4)=-2/f]

    4f[-67/4=-2/f]

    -67f=-8

    -67f/-67=-8/-67

    f=

    8/67 as a proper fraction (decimal: .119403 to 6d. p)

    PROOF

    If f=8/67, then the equations

    c=3/4-(-5)-2/f-(-5)

    -6=3/4+5–2/(8/67)+5

    -6=(3/4+5+5)-2(67/8)

    -6=(10 3/4)-2(67/8)

    -6=43/4–67/4

    -6=(43–67)/4

    -6=-24/4 and

    -6=-6 establish the root (zero) f=8/67 of the mathematical proposition -6=3/4-(-5)-2/f-(-5)

    C.H.

    Reply

Leave a Comment