if acostheta – bsintheta =c prove that (asintheta + bcostheta)= +-✓a^2+b^2+c^2 About the author Hadley
Answer: Instead of theta I had used ‘A’. Step-by-step explanation: acosA -bsinA= c squaring both sides a²cos²A +b²sin²A-2abcosAsinA=c ________(1) a²sin²A +b²cos²A+ 2absinAcosA = (asinA+bcosA)² _____(2) adding 1 and 2 a²cos²A + b²sin²A-2abcosAsinA + a²sin²A +b²cos²A+ 2absinAcosA = c+ (asinA+bcosA)² (a²+b²)cos²A +(a²+b²)sin²A = c+ (asinA+bcosA)² (a²+b²)(cos²A+sin²A)-c = (asinA+bcosA)² We know that sin²A+cos²A=1 a²+b²-c = (asinA+bcosA)² ±√(a²+b²-c) = asinA+bcosA asinA+bcosA = ±√(a²+b²-c) Hence proved. Reply
Answer:
Instead of theta I had used ‘A’.
Step-by-step explanation:
acosA -bsinA= c
squaring both sides
a²cos²A +b²sin²A-2abcosAsinA=c ________(1)
a²sin²A +b²cos²A+ 2absinAcosA = (asinA+bcosA)² _____(2)
adding 1 and 2
a²cos²A + b²sin²A-2abcosAsinA + a²sin²A +b²cos²A+ 2absinAcosA = c+ (asinA+bcosA)²
(a²+b²)cos²A +(a²+b²)sin²A = c+ (asinA+bcosA)²
(a²+b²)(cos²A+sin²A)-c = (asinA+bcosA)²
We know that sin²A+cos²A=1
a²+b²-c = (asinA+bcosA)²
±√(a²+b²-c) = asinA+bcosA
asinA+bcosA = ±√(a²+b²-c)
Hence proved.