if a power 2 + 6 a + x =(a+3) power 2 , find the value of x Plz solve it fast i will give u 20 points About the author Julia
Question: [tex]\large{\sf{a²+6a+x\:=\:(a+3)²}}[/tex] To Find: Value of x ? Solution: We are given equation is a² + 6a + x = (a+3)² Here, we can algebraic identities (a+b)² (i.e a² + b² + 2ab) in RHS for expanding. Where, a = a b = 3 Therefore, a² + 6a + x = (a+3)² → a² + 6a + x = a² + 3² + 2×a×3 → a² + 6a + x = a² + 9 + 6a → [tex]\small{\sf{\cancel{a²+6a}+x\:=\: {\cancel{a²}}+9 + {\cancel{6a}}}}[/tex] → x = 9 Therefore, Value of x = 9 Verification: a² + 6a + x = (a+3)² [Putting x = 9] → a² + 6a + 9 = a² + 3² + 2×a × 3 → a² + 6a + 9 = a² + 9 + 6a LHS = RHS [tex]\large{\bf{\green{Verified✓}}}[/tex] Reply
Question:
To Find:
Solution:
We are given equation is a² + 6a + x = (a+3)²
Here, we can algebraic identities (a+b)² (i.e a² + b² + 2ab) in RHS for expanding.
Where,
Therefore,
a² + 6a + x = (a+3)²
→ a² + 6a + x = a² + 3² + 2×a×3
→ a² + 6a + x = a² + 9 + 6a
→ [tex]\small{\sf{\cancel{a²+6a}+x\:=\: {\cancel{a²}}+9 + {\cancel{6a}}}}[/tex]
→ x = 9
Therefore,
Verification:
a² + 6a + x = (a+3)²
[Putting x = 9]
→ a² + 6a + 9 = a² + 3² + 2×a × 3
→ a² + 6a + 9 = a² + 9 + 6a
LHS = RHS
[tex]\large{\bf{\green{Verified✓}}}[/tex]
Answer is in the attachment