If a is a single digit number and a”-a is divisible by 10, where n is any natural number, how many values can a take? (A) 4 (B) 5 (C) 3 (D) 2 About the author Rylee
Answer: If a is a single digit number and a^n – a is divisible by 10, where n is any natural number, how many values can a take? Learn data structures & algorithms from industry experts. Profile photo for Vijay Mankar (विजय मानकर) Vijay Mankar (विजय मानकर) Updated Wed For 10|an−a 10∣a5−a,∀a={1,2,3,4,5,6,7,8,9} Since, 15−1=0,25−2=30,35−3=240,45−4=1020,55−5=3120,65−6=7770,75−7=16800,95−9=59040 Reason: ϕ(10)=10(1−1/2)(1−1/5)=4 By Euler theorem, a4≡1(mod10) a4−1≡0(mod10) a(a4−1)=a5−a≡0(mod10) So possible values of a are a={1,2,3,4,5,6,7,8,9} for different n. Reply
Answer:
If a is a single digit number and a^n – a is divisible by 10, where n is any natural number, how many values can a take?
Learn data structures & algorithms from industry experts.
Profile photo for Vijay Mankar (विजय मानकर)
Vijay Mankar (विजय मानकर)
Updated Wed
For 10|an−a
10∣a5−a,∀a={1,2,3,4,5,6,7,8,9}
Since, 15−1=0,25−2=30,35−3=240,45−4=1020,55−5=3120,65−6=7770,75−7=16800,95−9=59040
Reason:
ϕ(10)=10(1−1/2)(1−1/5)=4
By Euler theorem,
a4≡1(mod10)
a4−1≡0(mod10)
a(a4−1)=a5−a≡0(mod10)
So possible values of a are a={1,2,3,4,5,6,7,8,9} for different n.