[tex]\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{x = acosec\theta + bcot\theta} \\ &\sf{y = acosec\theta – bcot\theta} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\begin{gathered}\begin{gathered}\bf \: To \: eliminate – \begin{cases} &\sf{\theta}\end{cases}\end{gathered}\end{gathered}[/tex] [tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex] [tex] \boxed{ \sf \: {cosec}^{2}x – {cot}^{2}x = 1} [/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Given that [tex]\rm :\longmapsto\:x = acosec\theta + bcot\theta – – (1)[/tex] [tex]\rm :\longmapsto\:y = acosec\theta – bcot\theta – – – (2)[/tex] On adding equation (1) and equation (2), we get [tex]\rm :\longmapsto\:x + y = 2acosec\theta[/tex] [tex]\bf\implies \:cosec\theta = \dfrac{x + y}{2a} – – – (3)[/tex] On Subtracting equation (2) from equation (1), we get [tex]\rm :\longmapsto\:x – y = 2bcot\theta[/tex] [tex]\bf\implies \:cot\theta = \dfrac{x – y}{2b} – – – (4)[/tex] Now, We know, [tex]\rm :\longmapsto\: {cosec}^{2}\theta – {cot}^{2}\theta = 1 [/tex] On substituting the values from equation(3) and (4), we get [tex]\rm :\longmapsto\: {\bigg(\dfrac{x + y}{2a} \bigg) }^{2} – {\bigg(\dfrac{x – y}{2b} \bigg) }^{2} = 1 [/tex] [tex]\rm :\longmapsto\: {\bigg(\dfrac{x + y}{a} \bigg) }^{2} – {\bigg(\dfrac{x – y}{b} \bigg) }^{2} = 4 [/tex] Additional Information :- [tex] \boxed{ \sf \: {sin}^{2} + {cos}^{2}x = 1} [/tex] [tex] \boxed{ \sf \: {sec}^{2}x – {tan}^{2}x = 1} [/tex] [tex] \boxed{ \sf \: cosecx = \dfrac{1}{sinx}} [/tex] [tex] \boxed{ \sf \: secx = \dfrac{1}{cosx}} [/tex] [tex] \boxed{ \sf \: cotx = \dfrac{1}{tanx}} [/tex] Reply
[tex]\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{x = acosec\theta + bcot\theta} \\ &\sf{y = acosec\theta – bcot\theta} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\begin{gathered}\bf \: To \: eliminate – \begin{cases} &\sf{\theta}\end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]
[tex] \boxed{ \sf \: {cosec}^{2}x – {cot}^{2}x = 1} [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
[tex]\rm :\longmapsto\:x = acosec\theta + bcot\theta – – (1)[/tex]
[tex]\rm :\longmapsto\:y = acosec\theta – bcot\theta – – – (2)[/tex]
On adding equation (1) and equation (2), we get
[tex]\rm :\longmapsto\:x + y = 2acosec\theta[/tex]
[tex]\bf\implies \:cosec\theta = \dfrac{x + y}{2a} – – – (3)[/tex]
On Subtracting equation (2) from equation (1), we get
[tex]\rm :\longmapsto\:x – y = 2bcot\theta[/tex]
[tex]\bf\implies \:cot\theta = \dfrac{x – y}{2b} – – – (4)[/tex]
Now,
We know,
[tex]\rm :\longmapsto\: {cosec}^{2}\theta – {cot}^{2}\theta = 1 [/tex]
On substituting the values from equation(3) and (4), we get
[tex]\rm :\longmapsto\: {\bigg(\dfrac{x + y}{2a} \bigg) }^{2} – {\bigg(\dfrac{x – y}{2b} \bigg) }^{2} = 1 [/tex]
[tex]\rm :\longmapsto\: {\bigg(\dfrac{x + y}{a} \bigg) }^{2} – {\bigg(\dfrac{x – y}{b} \bigg) }^{2} = 4 [/tex]
Additional Information :-
[tex] \boxed{ \sf \: {sin}^{2} + {cos}^{2}x = 1} [/tex]
[tex] \boxed{ \sf \: {sec}^{2}x – {tan}^{2}x = 1} [/tex]
[tex] \boxed{ \sf \: cosecx = \dfrac{1}{sinx}} [/tex]
[tex] \boxed{ \sf \: secx = \dfrac{1}{cosx}} [/tex]
[tex] \boxed{ \sf \: cotx = \dfrac{1}{tanx}} [/tex]