Given equation is [tex]\bf \: x2 ( {a}^{2} + {b}^{2} ) + 2x(ac + bd) + ( {c}^{2}+ {d}^{2}) = 0[/tex] The equation will have no real roots only if Discriminant (D) < 0 [tex] \bf⇒ b2 \: – \: 4ac < 0[/tex] [tex]\bf⇒ b2 \: – \: 4ac[/tex] [tex]\bf ⇒ [2(ac + bd)]2 \: – \: 4 ( {a}^{2}+ {b}^{2}) ( {c}^{2} + {d}^{2})[/tex] [tex]\bf ⇒ 4( {a \: c \: + b \: d}^{2}) \: – 4( {a}^{2} \: {c}^{2} + {a}^{2} \: {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2})[/tex] [tex]\bf ⇒ 4( {a}^{2} {c}^{2} + {b}^{2} {d}^{2} + 2 \: abcd) – 4( {a}^{2} {c}^{2} + {a}^{2} {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2}) [/tex] [tex] \bf ⇒ 4 \: {a}^{2} {c}^{2} + 4 \: {b}^{2} {d}^{2} + 8 \: abcd – 4 \: {a}^{2} {c}^{2} – 4 \: {a}^{2} {d}^{2} – \: 4 \: {b}^{2} {c}^{2} \: – 4 \: {b}^{2} {d}^{2} [/tex] [tex] \bf ⇒ – 4 \: {a}^{2} {d}^{2} \: – \: 4 {b \:}^{2} {c}^{2} + 8 \: abcd[/tex] [tex] \bf – 4 [ {a}^{2} {d}^{2} + {b}^{2} {c}^{2} – 2 \: abcd][/tex] [tex] \bf – 4[( {a \: d \: – \: b \: c)}^{2} ][/tex] For ad ≠ bc [tex] \bf D = – \: 4 × [Value \: of ( {a \: d \: – \: b \: c)}^{2}][/tex] ∴ D always remain negative So , D < 0 ⇒ The given equation has no real roots. ︎︎︎ ︎︎︎ ︎︎︎ ︎︎︎ Reply
Given equation is
[tex]\bf \: x2 ( {a}^{2} + {b}^{2} ) + 2x(ac + bd) + ( {c}^{2}+ {d}^{2}) = 0[/tex]
The equation will have no real roots only if Discriminant (D) < 0
[tex] \bf⇒ b2 \: – \: 4ac < 0[/tex]
[tex]\bf⇒ b2 \: – \: 4ac[/tex]
[tex]\bf ⇒ [2(ac + bd)]2 \: – \: 4 ( {a}^{2}+ {b}^{2}) ( {c}^{2} + {d}^{2})[/tex]
[tex]\bf ⇒ 4( {a \: c \: + b \: d}^{2}) \: – 4( {a}^{2} \: {c}^{2} + {a}^{2} \: {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2})[/tex]
[tex]\bf ⇒ 4( {a}^{2} {c}^{2} + {b}^{2} {d}^{2} + 2 \: abcd) – 4( {a}^{2} {c}^{2} + {a}^{2} {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2})
[/tex]
[tex] \bf ⇒ 4 \: {a}^{2} {c}^{2} + 4 \: {b}^{2} {d}^{2} + 8 \: abcd – 4 \: {a}^{2} {c}^{2} – 4 \: {a}^{2} {d}^{2} – \: 4 \: {b}^{2} {c}^{2} \: – 4 \: {b}^{2} {d}^{2}
[/tex]
[tex] \bf ⇒ – 4 \: {a}^{2} {d}^{2} \: – \: 4 {b \:}^{2} {c}^{2} + 8 \: abcd[/tex]
[tex] \bf – 4 [ {a}^{2} {d}^{2} + {b}^{2} {c}^{2} – 2 \: abcd][/tex]
[tex] \bf – 4[( {a \: d \: – \: b \: c)}^{2} ][/tex]
For ad ≠ bc
[tex] \bf D = – \: 4 × [Value \: of ( {a \: d \: – \: b \: c)}^{2}][/tex]
∴ D always remain negative
So , D < 0
⇒ The given equation has no real roots.
︎︎︎
︎︎︎
︎︎︎
︎︎︎