If (a? +b)x2 +2 (ab+bd)x +c+d2 = 0 has no real roots, then​

If (a? +b)x2 +2 (ab+bd)x +c+d2 = 0 has no real roots, then​

About the author
Audrey

1 thought on “<br />If (a? +b)x2 +2 (ab+bd)x +c+d2 = 0 has no real roots, then​”

  1. Given equation is

    [tex]\bf \: x2 ( {a}^{2} + {b}^{2} ) + 2x(ac + bd) + ( {c}^{2}+ {d}^{2}) = 0[/tex]

    The equation will have no real roots only if Discriminant (D) < 0

    [tex] \bf⇒ b2 \: – \: 4ac < 0[/tex]

    [tex]\bf⇒ b2 \: – \: 4ac[/tex]

    [tex]\bf ⇒ [2(ac + bd)]2 \: – \: 4 ( {a}^{2}+ {b}^{2}) ( {c}^{2} + {d}^{2})[/tex]

    [tex]\bf ⇒ 4( {a \: c \: + b \: d}^{2}) \: – 4( {a}^{2} \: {c}^{2} + {a}^{2} \: {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2})[/tex]

    [tex]\bf ⇒ 4( {a}^{2} {c}^{2} + {b}^{2} {d}^{2} + 2 \: abcd) – 4( {a}^{2} {c}^{2} + {a}^{2} {d}^{2} + {b}^{2} {c}^{2} + {b}^{2} {d}^{2})

    [/tex]

    [tex] \bf ⇒ 4 \: {a}^{2} {c}^{2} + 4 \: {b}^{2} {d}^{2} + 8 \: abcd – 4 \: {a}^{2} {c}^{2} – 4 \: {a}^{2} {d}^{2} – \: 4 \: {b}^{2} {c}^{2} \: – 4 \: {b}^{2} {d}^{2}

    [/tex]

    [tex] \bf ⇒ – 4 \: {a}^{2} {d}^{2} \: – \: 4 {b \:}^{2} {c}^{2} + 8 \: abcd[/tex]

    [tex] \bf – 4 [ {a}^{2} {d}^{2} + {b}^{2} {c}^{2} – 2 \: abcd][/tex]

    [tex] \bf – 4[( {a \: d \: – \: b \: c)}^{2} ][/tex]

    For ad ≠ bc

    [tex] \bf D = – \: 4 × [Value \: of ( {a \: d \: – \: b \: c)}^{2}][/tex]

    D always remain negative

    So , D < 0

    The given equation has no real roots.

    ︎︎︎

    ︎︎︎

    ︎︎︎

    ︎︎︎

    Reply

Leave a Comment