If a, ß are zeroes of P(x) = x² – 6x + k, such that a² + ² = 20 then find the value of k. About the author Liliana
[tex]\sf{\huge{\underline{\green{Given :-}}}}[/tex] a, ß are zeroes of P(x) = x² – 6x + k, such that α² + β² = 20 . [tex]\sf{\huge{\underline{\green{To\:Find :-}}}}[/tex] The value of k. [tex]\sf{\huge{\underline{\green{Answer :-}}}}[/tex] We have, f(x) = x2 – 6x + k α² + β² = 20 ➝ ( α + β )² – 2αβ = 20 ——(1) α + β = -b/a ➝ -(-6)/1 ➝ 6 αβ = c/a ➝ k/1 ➝ k Putting Value in (1), ( α + β )² – 2αβ = 20 ➝ ( 6 )² – 2k = 20 ➝ 36 – 2k = 20 ➝ – 2k = 20 – 36 ➝ – 2k = -16 ➝ k = -16/-2 ➝ k = 8 The value of k is 8. Reply
[tex]\sf{\huge{\underline{\green{Given :-}}}}[/tex]
[tex]\sf{\huge{\underline{\green{To\:Find :-}}}}[/tex]
[tex]\sf{\huge{\underline{\green{Answer :-}}}}[/tex]
We have,
f(x) = x2 – 6x + k
α² + β² = 20
➝ ( α + β )² – 2αβ = 20 ——(1)
α + β = -b/a
➝ -(-6)/1
➝ 6
αβ = c/a
➝ k/1
➝ k
Putting Value in (1),
( α + β )² – 2αβ = 20
➝ ( 6 )² – 2k = 20
➝ 36 – 2k = 20
➝ – 2k = 20 – 36
➝ – 2k = -16
➝ k = -16/-2
➝ k = 8
The value of k is 8.