If A and B are acute angle of right angled Triangle ABC the prove TanA.tanB is equal to 1 About the author Ariana
[tex]\large\underline{\bf{Solution-}}[/tex] Given :- In triangle ABC, A and B are acute angles and triangle is right angled at C. To Prove :- tanA × tanB = 1 Solution :- Given that, Triangle ABC is right-angle triangle right-angled at C. So, ⟼ Using angle sum property of triangle, ⟼ ∠A + ∠B + ∠C = 180°. ⟼ ∠A + ∠B = 180° – ∠C ⟼ ∠A + ∠B = 180° – 90° ⟼ ∠A + ∠B = 90° ⇛ ∠B = 90° – ∠A Consider, ⟼ tanA × tanB = tanA × tan(90° – A) = tanA × cotA [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \red{\bigg \{ \because \: tan(90 \degree \: – x) = cotx\bigg \}}[/tex] = 1 [tex]\red{\bigg \{ \because \: tanx = \dfrac{1}{cotx}\rm :\implies\:tanx \times cotx = 1 \bigg \}}[/tex] [tex]\large{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex] Additional Information:- Relationship between sides and T ratios sin θ = Opposite Side/Hypotenuse cos θ = Adjacent Side/Hypotenuse tan θ = Opposite Side/Adjacent Side sec θ = Hypotenuse/Adjacent Side cosec θ = Hypotenuse/Opposite Side cot θ = Adjacent Side/Opposite Side Reciprocal Identities cosec θ = 1/sin θ sec θ = 1/cos θ cot θ = 1/tan θ sin θ = 1/cosec θ cos θ = 1/sec θ tan θ = 1/cot θ Co-function Identities sin (90°−x) = cos x cos (90°−x) = sin x tan (90°−x) = cot x cot (90°−x) = tan x sec (90°−x) = cosec x cosec (90°−x) = sec x Fundamental Trigonometric Identities sin²θ + cos²θ = 1 sec²θ – tan²θ = 1 cosec²θ – cot²θ = 1 Reply
[tex]\large\underline{\bf{Solution-}}[/tex]
Given :-
In triangle ABC,
To Prove :-
Solution :-
Given that,
So,
⟼ Using angle sum property of triangle,
⟼ ∠A + ∠B + ∠C = 180°.
⟼ ∠A + ∠B = 180° – ∠C
⟼ ∠A + ∠B = 180° – 90°
⟼ ∠A + ∠B = 90°
⇛ ∠B = 90° – ∠A
Consider,
⟼ tanA × tanB
= tanA × tan(90° – A)
= tanA × cotA
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \red{\bigg \{ \because \: tan(90 \degree \: – x) = cotx\bigg \}}[/tex]
= 1
[tex]\red{\bigg \{ \because \: tanx = \dfrac{1}{cotx}\rm :\implies\:tanx \times cotx = 1 \bigg \}}[/tex]
[tex]\large{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex]
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ – tan²θ = 1
cosec²θ – cot²θ = 1