If x = a^2-bc, y = b^2-ac, z=c^2-ab
Then prove that x^3+y^3+z^3-3xyz is a perfect square

If x = a^2-bc, y = b^2-ac, z=c^2-ab
Then prove that x^3+y^3+z^3-3xyz is a perfect square

About the author
Samantha

2 thoughts on “If x = a^2-bc, y = b^2-ac, z=c^2-ab<br /> Then prove that x^3+y^3+z^3-3xyz is a perfect square <br />”

  1. Answer:

    Prove that:-

    (x/a)^3+(y/b)^3+(z/c)^3 = 3x.y.z/a.b.c.

    L.H.S.

    =(x/a)^3+(y/b)^3+(z/c)^3.

    We have on adding eq.(1) ,(2) & (3).

    x/a+y/b+z/c=b-c+c-a+a-b =0.

    If x/a+y/b+z/c=0 then

    (x/a)^3+(y/b)^3+(z/c)^3=3×(x/a)×(y/b)×(z/c).

    or (x/a)^3+(y/b)^3+(z/c)^3 =3.x.y.z/a.b..c.

    Proved.

    Hope it helps

    Reply

Leave a Comment