If 3x−y=12, what is the value of
[tex] \frac{ {8}^{x} }{ {2}^{y} }[/tex]


A)
[tex] {2}^{12} [/tex]

If 3x−y=12, what is the value of
[tex] \frac{ {8}^{x} }{ {2}^{y} }[/tex]

A)
[tex] {2}^{12} [/tex]

B)
[tex] {4}^{4} [/tex]

C)
[tex] {8}^{2} [/tex]

D) The value cannot be determined from the information given.

About the author
Madelyn

2 thoughts on “If 3x−y=12, what is the value of <br />[tex] \frac{ {8}^{x} }{ {2}^{y} }[/tex]<br /><br /><br />A) <br />[tex] {2}^{12} [/tex]<br”

  1. Answer:

    option (A) 2¹²

    Step-by-step explanation:

    Given :

    3x – y = 12

    To find :

    the value of \sf \dfrac{8^x}{2^y}

    2

    y

    8

    x

    Solution :

    3x – y = 12

    3x = 12 + y —[1]

    Now, 8 can be written as (2 × 2 × 2)

    i.e., 8 = 2³

    \longrightarrow \sf 8^x = (2^3)^x = 2^{3x}⟶8

    x

    =(2

    3

    )

    x

    =2

    3x

    Put 3x = 12 + y [ ∵ eqn. 1 ]

    \longrightarrow \sf 2^{3x}=2^{12+y}⟶2

    3x

    =2

    12+y

    So,

    \begin{gathered}\implies \sf \dfrac{8^x}{2^y}=\dfrac{2^{3x}}{2^y} \\\\ \implies \sf \dfrac{8^x}{2^y}=\dfrac{2^{12+y}}{2^y}\end{gathered}

    2

    y

    8

    x

    =

    2

    y

    2

    3x

    2

    y

    8

    x

    =

    2

    y

    2

    12+y

    We know, \rm \dfrac{a^m}{a^n}=a^{m-n}

    a

    n

    a

    m

    =a

    m−n

    \begin{gathered}\implies \sf \dfrac{8^x}{2^y}=2^{(12+y-y)} \\\\ \implies \sf \dfrac{8^x}{2^y}=2^{12}\end{gathered}

    2

    y

    8

    x

    =2

    (12+y−y)

    2

    y

    8

    x

    =2

    12

    Therefore, the required value is 2¹²

    ________________________________

    Laws of exponents :

    \begin{gathered}\dag \ \sf a^m \times a^n=a^{m+n} \\\\ \dag \ \sf \dfrac{a^m}{a^n}=a^{m-n} \\\\ \dag \ \sf (a^m)^n=a^{mn} \\\\ \dag \ \sf a^{-n}=\dfrac{1}{a^n} \\\\ \dag \ \sf \sqrt[n]{a} =a^{\dfrac{1}{n}\end{gathered}

    Step-by-step explanation:

    pls mark brainliest

    Reply
  2. Answer:

    option (A) 2¹²

    Step-by-step explanation:

    Given :

    3x – y = 12

    To find :

    the value of [tex]\sf \dfrac{8^x}{2^y}[/tex]

    Solution :

    3x – y = 12

    3x = 12 + y —[1]

    Now, 8 can be written as (2 × 2 × 2)

    i.e., 8 = 2³

    [tex]\longrightarrow \sf 8^x = (2^3)^x = 2^{3x}[/tex]

    Put 3x = 12 + y [ ∵ eqn. 1 ]

    [tex]\longrightarrow \sf 2^{3x}=2^{12+y}[/tex]

    So,

    [tex]\implies \sf \dfrac{8^x}{2^y}=\dfrac{2^{3x}}{2^y} \\\\ \implies \sf \dfrac{8^x}{2^y}=\dfrac{2^{12+y}}{2^y}[/tex]

    We know, [tex]\rm \dfrac{a^m}{a^n}=a^{m-n}[/tex]

    [tex]\implies \sf \dfrac{8^x}{2^y}=2^{(12+y-y)} \\\\ \implies \sf \dfrac{8^x}{2^y}=2^{12}[/tex]

    Therefore, the required value is 2¹²

    ________________________________

    Laws of exponents :

    [tex]\dag \ \sf a^m \times a^n=a^{m+n} \\\\ \dag \ \sf \dfrac{a^m}{a^n}=a^{m-n} \\\\ \dag \ \sf (a^m)^n=a^{mn} \\\\ \dag \ \sf a^{-n}=\dfrac{1}{a^n} \\\\ \dag \ \sf \sqrt[n]{a} =a^{\dfrac{1}{n}}[/tex]

    Reply

Leave a Comment