Answer: [tex] {x}^{2} + {y}^{2} = 23xy \\ {x}^{2} + {y}^{2} + 2xy = 23xy + 2xy \\ {(x + y)}^{2} = 25xy \\ \frac{ {(x + y)}^{2} }{25} = xy \\ {( \frac{x + y}{5}) }^{2} = xy[/tex] Now applying log on both sides of this simplified equation, [tex] log( {( \frac{x + y}{5}) }^{2} ) = log(xy) [/tex] Now using the properties of logarithms, [tex]2 log( \frac{x + y}{5} ) = log(x) + log(y) [/tex] [tex] log( \frac{x + y}{5} ) = \frac{ log(x) + log(y) }{2} [/tex] Hence proved. Reply
Step-by-step explanation: (x+y)2 = x2 + 2xy + y2 = 25xy log(x+y)2 = 2log(x+y) But, log(x+y)2 = log(25xy) = log25 + logx + logy = log(52) + logx + logy = 2log5 + logx + logy So, 2log(x+y) = 2log5 + logx + logy 2(log(x+y) – log5) = logx + logy log(x+y) – log5 = ½[logx + logy] log{(x+y)/5} = ½[logx + logy] Reply
Answer:
[tex] {x}^{2} + {y}^{2} = 23xy \\ {x}^{2} + {y}^{2} + 2xy = 23xy + 2xy \\ {(x + y)}^{2} = 25xy \\ \frac{ {(x + y)}^{2} }{25} = xy \\ {( \frac{x + y}{5}) }^{2} = xy[/tex]
Now applying log on both sides of this simplified equation,
[tex] log( {( \frac{x + y}{5}) }^{2} ) = log(xy) [/tex]
Now using the properties of logarithms,
[tex]2 log( \frac{x + y}{5} ) = log(x) + log(y) [/tex]
[tex] log( \frac{x + y}{5} ) = \frac{ log(x) + log(y) }{2} [/tex]
Hence proved.
Step-by-step explanation:
(x+y)2 = x2 + 2xy + y2 = 25xy
log(x+y)2 = 2log(x+y)
But, log(x+y)2 = log(25xy)
= log25 + logx + logy
= log(52) + logx + logy
= 2log5 + logx + logy
So, 2log(x+y) = 2log5 + logx + logy
2(log(x+y) – log5) = logx + logy
log(x+y) – log5 = ½[logx + logy]
log{(x+y)/5} = ½[logx + logy]