if 2/3 and -3 are the roots of the equation px² + x² + q =0 find the values of P and Q About the author Maya
Correct Question: if 2/3 and -3 are the roots of the equation px² + 7x + q =0 find the values of P and Q Solution: [tex] { \red{ \bf{ Let’s\: substitute \:the\: given\: value}}}[/tex] [tex] { \red{ \bf{ x = 2/3 \:in \:the \:expression,\: we \:get:}}}[/tex] px² + 7x + q = 0 p(2/3)² + 7(2/3) + q = 0 4p/9 + 14/3 + q = 0 [tex] { \red{ \bf{ }}}[/tex] By taking LCM 4p + 42 + 9q = 0 [tex] { \red{ \bf{ 4p + 9q = – 42———-(1)}}}[/tex] [tex] { \red{ \bf{Now, }}}[/tex] [tex] { \red{ \bf{ substitute\: the\: value\: x = -3 }}}[/tex] [tex] { \red{ \bf{ in\: the \:expression,\: we\: get:}}}[/tex] px² + 7x + q = 0 p(-3)² + 7(-3) + q = 0 9p + q – 21 = 0 9p + q = 21 [tex] { \red{ \bf{ q = 21 – 9———–(2)}}}[/tex] [tex] { \red{ \bf{ By \: substituting \: the\: value\: of \:q\: in\: eqn. (1),}}}[/tex] [tex] { \red{ \bf{ We\: get:}}}[/tex] 4p + 9q = – 42 4p + 9(21 – 9p) = -42 4p + 189 – 81p = -42 189 – 77p = -42 189 + 42 = 77p 231 = 77p p = 231/77 [tex] { \red{ \bf{ p = 3 }}}[/tex] [tex] { \red{ \bf{ Now, \:substitute\: the\: value\: of\: p\: in \:equation (2), }}}[/tex] [tex] { \red{ \bf{ We \: get: }}}[/tex] q = 21 – 9p = 21 – 9(3) = 21 – 27 [tex] { \red{ \bf{ = -6 }}}[/tex] [tex] { \red{ \bf{ ∴ Value\: of \:p \: is \: 3 \: and \: q \: is \: -6. }}}[/tex] Reply
Answer: Nature of roots of Q.E can be understood by evaluating the discriminant of the given Q.E. Let’s find it. Δ=b2−4ac Δ=[5(p+q)2]−4(p−q)[−2(p−q)] =25(p2+q2+2pq)−8(p−q)2 =25p2+25q2+50pq−8(p2+q2−2pq) =25p2+25q2+50pq−8p2−8q2+16pq =17p2+17q2+66pq If values of p & q are both positive, then the roots are real. Reply
Correct Question:
if 2/3 and -3 are the roots of the equation px² + 7x + q =0 find the values of P and Q
Solution:
[tex] { \red{ \bf{ Let’s\: substitute \:the\: given\: value}}}[/tex]
[tex] { \red{ \bf{ x = 2/3 \:in \:the \:expression,\: we \:get:}}}[/tex]
px² + 7x + q = 0
p(2/3)² + 7(2/3) + q = 0
4p/9 + 14/3 + q = 0
[tex] { \red{ \bf{ }}}[/tex]
By taking LCM
4p + 42 + 9q = 0
[tex] { \red{ \bf{ 4p + 9q = – 42———-(1)}}}[/tex]
[tex] { \red{ \bf{Now, }}}[/tex]
[tex] { \red{ \bf{ substitute\: the\: value\: x = -3 }}}[/tex]
[tex] { \red{ \bf{ in\: the \:expression,\: we\: get:}}}[/tex]
px² + 7x + q = 0
p(-3)² + 7(-3) + q = 0
9p + q – 21 = 0
9p + q = 21
[tex] { \red{ \bf{ q = 21 – 9———–(2)}}}[/tex]
[tex] { \red{ \bf{ By \: substituting \: the\: value\: of \:q\: in\: eqn. (1),}}}[/tex]
[tex] { \red{ \bf{ We\: get:}}}[/tex]
4p + 9q = – 42
4p + 9(21 – 9p) = -42
4p + 189 – 81p = -42
189 – 77p = -42
189 + 42 = 77p
231 = 77p
p = 231/77
[tex] { \red{ \bf{ p = 3 }}}[/tex]
[tex] { \red{ \bf{ Now, \:substitute\: the\: value\: of\: p\: in \:equation (2), }}}[/tex]
[tex] { \red{ \bf{ We \: get: }}}[/tex]
q = 21 – 9p
= 21 – 9(3)
= 21 – 27
[tex] { \red{ \bf{ = -6 }}}[/tex]
[tex] { \red{ \bf{ ∴ Value\: of \:p \: is \: 3 \: and \: q \: is \: -6. }}}[/tex]
Answer:
Nature of roots of Q.E can be understood by evaluating the discriminant of the given Q.E.
Let’s find it.
Δ=b2−4ac
Δ=[5(p+q)2]−4(p−q)[−2(p−q)]
=25(p2+q2+2pq)−8(p−q)2
=25p2+25q2+50pq−8(p2+q2−2pq)
=25p2+25q2+50pq−8p2−8q2+16pq
=17p2+17q2+66pq
If values of p & q are both positive, then the roots are real.