I vector field F- (2y + 2) ++ (2x + 2)]+yk is irrotational then value of a isOA 0B15D4 About the author Jasmine
Answer: F¯¯¯¯$=$(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k and r¯¯=xi¯+yj¯+zk¯¯¯ ∴dr=dxi¯+dyj¯+dzk¯¯¯ Since F¯¯¯¯ is irrotational Curl F¯¯¯¯=0 ∴ ∣∣∣∣∣i¯∂∂xFxj¯∂∂yFyk¯¯¯∂∂zFz∣∣∣∣∣=0 ∴ ∣∣∣∣∣i¯∂∂xx+2y+azj¯∂∂ybx−3y−zk¯¯¯∂∂z4x+cy+2z∣∣∣∣∣=0 ∴i[∂∂y(4x+cy+2z)− ∂∂z(bx−3y−z)]−j[∂∂x(4x+cy+2z)+ ∂∂z(x+2y+az)]+k[∂∂x(bx−3y−z)− ∂∂y(x+2y+az)] ∴i[c−1]−j[4−a]+k[b−2]=0i+0j+0k Comparing co-efficient of i,j,k ∴[c−1]=0 ∴[4−a]=0 ∴[b−2]=0 ∴c=1 , a=4 , b=2 ∴ F¯¯¯¯=(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k ∵F¯¯¯¯ is irrotational ,there exists a scalar potential of F¯¯¯¯ such that F¯¯¯¯= ∇∮ ∴(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k=i∂∮∂x+j∂∮∂y+k∂∮∂z Comparing co-eeficient of i,j,k we get, ∂∫∂x= (x+2y+az) ∂∫∂y= (bx−3y−z) ∂∫∂z= (4x+cy+2z) Integrating we get , ∮=(x22+2yx+4zx)+(2xy−3y22−zy)+(4zx−2y+2z22) + c As the same term is twice, it is written only once in this type of integration. ∴ ∫=x22+2yx+4zx+2xy−3y22−zy+4zx−2y+z2+c ∴ Scalar potential of F¯¯¯¯= ∫= 1/2[x2+4yx+8zx−3y2−2zy+2z2+c Now work done in moving a particle in this field = ∫CF¯¯¯¯.dr¯¯¯¯¯ =∫C((x+2y+4z) dx+(2x−3y−z)dy+(4x+y+2z)dz Integrating we get , =[x2+4yx+8zx−3y2−2zy+2z2](3,3,2)(1,2,−4) =[9/2+2∗3∗3+4∗2∗3−3∗9/2−3∗2∗−4]−−[1/2+2∗2∗1+4∗(−4)∗1−3∗2−2∗(−4)+16]=24.5 ∴Work done in moving a particle=24.5 Reply
Answer:
F¯¯¯¯$=$(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k
and
r¯¯=xi¯+yj¯+zk¯¯¯
∴dr=dxi¯+dyj¯+dzk¯¯¯
Since F¯¯¯¯ is irrotational
Curl F¯¯¯¯=0
∴ ∣∣∣∣∣i¯∂∂xFxj¯∂∂yFyk¯¯¯∂∂zFz∣∣∣∣∣=0
∴ ∣∣∣∣∣i¯∂∂xx+2y+azj¯∂∂ybx−3y−zk¯¯¯∂∂z4x+cy+2z∣∣∣∣∣=0
∴i[∂∂y(4x+cy+2z)− ∂∂z(bx−3y−z)]−j[∂∂x(4x+cy+2z)+ ∂∂z(x+2y+az)]+k[∂∂x(bx−3y−z)− ∂∂y(x+2y+az)]
∴i[c−1]−j[4−a]+k[b−2]=0i+0j+0k
Comparing co-efficient of i,j,k
∴[c−1]=0
∴[4−a]=0
∴[b−2]=0
∴c=1 , a=4 , b=2
∴ F¯¯¯¯=(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k
∵F¯¯¯¯ is irrotational ,there exists a scalar potential of F¯¯¯¯ such that F¯¯¯¯= ∇∮
∴(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k=i∂∮∂x+j∂∮∂y+k∂∮∂z
Comparing co-eeficient of i,j,k we get,
∂∫∂x= (x+2y+az)
∂∫∂y= (bx−3y−z)
∂∫∂z= (4x+cy+2z)
Integrating we get ,
∮=(x22+2yx+4zx)+(2xy−3y22−zy)+(4zx−2y+2z22) + c
As the same term is twice, it is written only once in this type of integration.
∴ ∫=x22+2yx+4zx+2xy−3y22−zy+4zx−2y+z2+c
∴ Scalar potential of F¯¯¯¯= ∫= 1/2[x2+4yx+8zx−3y2−2zy+2z2+c
Now work done in moving a particle in this field = ∫CF¯¯¯¯.dr¯¯¯¯¯
=∫C((x+2y+4z) dx+(2x−3y−z)dy+(4x+y+2z)dz
Integrating we get ,
=[x2+4yx+8zx−3y2−2zy+2z2](3,3,2)(1,2,−4)
=[9/2+2∗3∗3+4∗2∗3−3∗9/2−3∗2∗−4]−−[1/2+2∗2∗1+4∗(−4)∗1−3∗2−2∗(−4)+16]=24.5
∴Work done in moving a particle=24.5