I vector field F- (2y + 2) ++ (2x + 2)]+yk is irrotational then value of a is
O
A 0
B
1
5
D
4

I vector field F- (2y + 2) ++ (2x + 2)]+yk is irrotational then value of a is
O
A 0
B
1
5
D
4

About the author
Jasmine

1 thought on “I vector field F- (2y + 2) ++ (2x + 2)]+yk is irrotational then value of a is<br />O<br />A 0<br />B<br />1<br />5<br />D<br />4<b”

  1. Answer:

    F¯¯¯¯$=$(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k

    and

    r¯¯=xi¯+yj¯+zk¯¯¯

    ∴dr=dxi¯+dyj¯+dzk¯¯¯

    Since F¯¯¯¯ is irrotational

    Curl F¯¯¯¯=0

    ∴ ∣∣∣∣∣i¯∂∂xFxj¯∂∂yFyk¯¯¯∂∂zFz∣∣∣∣∣=0

    ∴ ∣∣∣∣∣i¯∂∂xx+2y+azj¯∂∂ybx−3y−zk¯¯¯∂∂z4x+cy+2z∣∣∣∣∣=0

    ∴i[∂∂y(4x+cy+2z)− ∂∂z(bx−3y−z)]−j[∂∂x(4x+cy+2z)+ ∂∂z(x+2y+az)]+k[∂∂x(bx−3y−z)− ∂∂y(x+2y+az)]

    ∴i[c−1]−j[4−a]+k[b−2]=0i+0j+0k

    Comparing co-efficient of i,j,k

    ∴[c−1]=0

    ∴[4−a]=0

    ∴[b−2]=0

    ∴c=1 , a=4 , b=2

    ∴ F¯¯¯¯=(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k

    ∵F¯¯¯¯ is irrotational ,there exists a scalar potential of F¯¯¯¯ such that F¯¯¯¯= ∇∮

    ∴(x+2y+az)i+(bx−3y−z)j+(4x+cy+2z)k=i∂∮∂x+j∂∮∂y+k∂∮∂z

    Comparing co-eeficient of i,j,k we get,

    ∂∫∂x= (x+2y+az)

    ∂∫∂y= (bx−3y−z)

    ∂∫∂z= (4x+cy+2z)

    Integrating we get ,

    ∮=(x22+2yx+4zx)+(2xy−3y22−zy)+(4zx−2y+2z22) + c

    As the same term is twice, it is written only once in this type of integration.

    ∴ ∫=x22+2yx+4zx+2xy−3y22−zy+4zx−2y+z2+c

    ∴ Scalar potential of F¯¯¯¯= ∫= 1/2[x2+4yx+8zx−3y2−2zy+2z2+c

    Now work done in moving a particle in this field = ∫CF¯¯¯¯.dr¯¯¯¯¯

    =∫C((x+2y+4z) dx+(2x−3y−z)dy+(4x+y+2z)dz

    Integrating we get ,

    =[x2+4yx+8zx−3y2−2zy+2z2](3,3,2)(1,2,−4)

    =[9/2+2∗3∗3+4∗2∗3−3∗9/2−3∗2∗−4]−−[1/2+2∗2∗1+4∗(−4)∗1−3∗2−2∗(−4)+16]=24.5

    ∴Work done in moving a particle=24.5

    Reply

Leave a Comment