From a right circular cylinder of radius 7 cm, height 24cm of conical cavity of same base radius and of same height hollowed out.

From a right circular cylinder of radius 7 cm, height 24cm of conical cavity of same base radius and of same height hollowed out. find the volume and whole surface of remaining solid.

spammers stay away….​

About the author
Liliana

2 thoughts on “From a right circular cylinder of radius 7 cm, height 24cm of conical cavity of same base radius and of same height hollowed out.”

  1. [tex]{\bf{\underline{\underline \blue{ Answer }}}}[/tex]

    • Height of cylinder/cone (h)= 24cm
    • Radius of cylinder/cone (r)= 7cm

    [tex]{\bf{\underline{\underline \purple{ To\:Find }}}}[/tex]

    • We have to find out the Volume and surface area of remaining solid

    [tex]{\bf{\underline{\underline \blue{ Solution }}}}[/tex]

    Volume of remaining solid = Volume of cylinder- Volume of cone

    [tex]:\implies\sf\ V.\ of\ remaining\ solid = \pi r^2 h-\dfrac{1}{3}\pi r^2\ h \\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{3}\pi r^2 h\big(3-1\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{\cancel3}\times \dfrac{22}{\cancel{7}}\times \cancel{7}\times 7\times \cancel{24}\times \big(2\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid =22\times 7\times 8\times 2\\ \\ \\ :\implies\underline{\boxed{\blue{\sf\ Volume\ of\ remaining\ solid = 2624cm^3}}}[/tex]

    ● Surface area of remaining solid = CSA of cylinder+ CSA of cone + Area of top (circular part)

    [tex]\sf\bigstar\ \ Surface\ Area= 2\pi r h+ \pi r \ell + \pi r^2[/tex]

    [tex]\bullet\sf \ell= \sqrt{r^2+h^2}\\ \\ \longmapsto\sf \ell= \sqrt{(7)^2+(24)^2}\\ \\ \longmapsto\sf \ell= \sqrt{49+576}\\ \\ \longmapsto\sf \ell= \sqrt{625}\\ \\ \underline{\boxed{\sf\ \ell= 25cm}}[/tex]

    Now surface Area :-

    [tex]:\implies\sf\ Surface\ Area= \pi r\big\lgroup 2h+\ell+r\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= \dfrac{22}{\cancel{7}}\times \cancel{7}\big\lgroup (2\times 24)+ 25+7\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times \big\lgroup 48+32\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times 80\\ \\ \\ :\implies\underline{\boxed{\purple{\sf\ Surface\ area\ of\ remaining\ solid= 1760cm^2}}}[/tex]

    Reply

Leave a Comment