find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient
xsq

find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient
xsquare-5x​

About the author
Gabriella

2 thoughts on “find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient <br />xsq”

  1. Answer:

    Correct Question :-

    • Find the zeroes of the following quadratic equation polynomial x² – 5 and verify the relationship between the zeroes and co-efficient.

    Given :-

    • x² – 5

    To Find :-

    • What is the zeroes of the quadratic equation.
    • Verify the relationship between the zeroes and co-efficient.

    Formula Used :-

    [tex]\clubsuit[/tex] Sum of roots :

    [tex]\longmapsto \: \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}[/tex]

    [tex]\clubsuit[/tex] Product of roots :

    [tex]\longmapsto \sf \boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}[/tex]

    Solution :-

    Given :

    [tex]\dashrightarrow \sf\bold{\green{x^2 – 5}}[/tex]

    [tex]\implies \sf p(x) =\: x^2 – 5[/tex]

    [tex]\implies \sf x^2 – 5 =\: 0[/tex]

    [tex]\implies \sf x^2 =\: 5[/tex]

    [tex]\implies \sf x =\: \sqrt{5}[/tex]

    [tex]\implies \sf\bold{\red{x =\: \sqrt{5}}}[/tex]

    And,

    [tex]\implies \sf\bold{\red{x =\: – \sqrt{5}}}[/tex]

    [tex]\therefore[/tex] The zeroes of quadratic polynomial is 5 and 5.

    Hence,

    • α = √5
    • β = – √5

    [tex]\rule{150}{2}[/tex]

    [tex]\bigstar[/tex] Verify the relationship between the zeroes and co-efficient :

    Given equation :

    [tex]\dashrightarrow \sf x^2 – 5[/tex]

    where,

    • a = 1
    • b = 0
    • c = – 5

    [tex]\leadsto \sf\bold{Sum\: of\: roots\: :-}[/tex]

    [tex]\implies \sf \sqrt{5} + (- \sqrt{5}) =\: \dfrac{- 0}{1}[/tex]

    [tex]\implies \sf {\cancel{\sqrt{5}}} – {\cancel{\sqrt{5}}} =\: 0[/tex]

    [tex]\implies \sf\bold{\red{0 =\: 0}}[/tex]

    [tex]\leadsto \sf\bold{Product\: of\: roots}[/tex]

    [tex]\implies \sf \sqrt{5} \times (- \sqrt{5}) =\: \dfrac{- 5}{1}[/tex]

    [tex]\implies \sf – \sqrt{25} =\: – 5[/tex]

    [tex]\implies \sf\bold{\red{- 5 =\: – 5}}[/tex]

    Hence, Verified.

    Reply
  2. ✯✯ QUESTION ✯✯

    Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of x²-9..

    ━━━━━━━━━━━━━━━━━━━━

    ✰✰ ANSWER ✰✰

    [tex]\longrightarrow{{x}^{2}-9} [/tex]

    Using Identity : –

    [tex]\longrightarrow{{a}^{2}-{b}^{2}=(a+b)(a-b)}[/tex]

    [tex]\longrightarrow{({x}^{2}+(-9)({x}^{2}-(-9)}[/tex]

    [tex]\longrightarrow{({x}^{2}-9)({x}^{2}+9)}[/tex]

    Now ,

    [tex]\longrightarrow{{x}^{2}-9=0}[/tex]

    [tex]\longrightarrow{{x}^{2}=\sqrt{9}} [/tex]

    [tex]\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{3}}}[/tex]

    [tex]\longrightarrow{{x}^{2}+9=0} [/tex]

    [tex]\longrightarrow{{x}^{2}=\sqrt[-]{9}} [/tex]

    [tex]\red\longmapsto\:\large\underline{\boxed{\bf\orange{x}\green{=}\blue{-3}}}[/tex]

    So , 3 and -3 are the zeroes of polynomials x²-9..

    Now ,

    ➥Sum of Zeroes : –

    [tex]\longrightarrow{\alpha+\beta=\dfrac{-b}{a}}[/tex]

    [tex]\longrightarrow{3+(-3)=\dfrac{-(-0)}{1}}⟶3+(−3)[/tex]

    [tex]\longrightarrow{0=0}[/tex]

    ➥Product of Zeroes : –

    [tex]\longrightarrow{\alpha\beta=\dfrac{c}{a}} [/tex]

    [tex]\longrightarrow{3\times{-3}=\dfrac{-9}{1}} [/tex]

    [tex]\longrightarrow{-9=-9}[/tex]

    [tex]\pink\longmapsto\:\large\underline{\boxed{\bf\purple{L.H.S}\green{=}\red{R.H.S}}}[/tex]

    Reply

Leave a Comment