find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient xsquare-5x About the author Gabriella
Answer: Correct Question :- Find the zeroes of the following quadratic equation polynomial x² – 5 and verify the relationship between the zeroes and co-efficient. Given :- x² – 5 To Find :- What is the zeroes of the quadratic equation. Verify the relationship between the zeroes and co-efficient. Formula Used :- [tex]\clubsuit[/tex] Sum of roots : [tex]\longmapsto \: \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}[/tex] [tex]\clubsuit[/tex] Product of roots : [tex]\longmapsto \sf \boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}[/tex] Solution :- Given : [tex]\dashrightarrow \sf\bold{\green{x^2 – 5}}[/tex] [tex]\implies \sf p(x) =\: x^2 – 5[/tex] [tex]\implies \sf x^2 – 5 =\: 0[/tex] [tex]\implies \sf x^2 =\: 5[/tex] [tex]\implies \sf x =\: \sqrt{5}[/tex] [tex]\implies \sf\bold{\red{x =\: \sqrt{5}}}[/tex] And, [tex]\implies \sf\bold{\red{x =\: – \sqrt{5}}}[/tex] [tex]\therefore[/tex] The zeroes of quadratic polynomial is √5 and – √5. Hence, α = √5 β = – √5 [tex]\rule{150}{2}[/tex] [tex]\bigstar[/tex] Verify the relationship between the zeroes and co-efficient : Given equation : [tex]\dashrightarrow \sf x^2 – 5[/tex] where, a = 1 b = 0 c = – 5 [tex]\leadsto \sf\bold{Sum\: of\: roots\: :-}[/tex] [tex]\implies \sf \sqrt{5} + (- \sqrt{5}) =\: \dfrac{- 0}{1}[/tex] [tex]\implies \sf {\cancel{\sqrt{5}}} – {\cancel{\sqrt{5}}} =\: 0[/tex] [tex]\implies \sf\bold{\red{0 =\: 0}}[/tex] [tex]\leadsto \sf\bold{Product\: of\: roots}[/tex] [tex]\implies \sf \sqrt{5} \times (- \sqrt{5}) =\: \dfrac{- 5}{1}[/tex] [tex]\implies \sf – \sqrt{25} =\: – 5[/tex] [tex]\implies \sf\bold{\red{- 5 =\: – 5}}[/tex] Hence, Verified. Reply
✯✯ QUESTION ✯✯ Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of x²-9.. ━━━━━━━━━━━━━━━━━━━━ ✰✰ ANSWER ✰✰ [tex]\longrightarrow{{x}^{2}-9} [/tex] Using Identity : – [tex]\longrightarrow{{a}^{2}-{b}^{2}=(a+b)(a-b)}[/tex] [tex]\longrightarrow{({x}^{2}+(-9)({x}^{2}-(-9)}[/tex] [tex]\longrightarrow{({x}^{2}-9)({x}^{2}+9)}[/tex] Now , [tex]\longrightarrow{{x}^{2}-9=0}[/tex] [tex]\longrightarrow{{x}^{2}=\sqrt{9}} [/tex] [tex]\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{3}}}[/tex] [tex]\longrightarrow{{x}^{2}+9=0} [/tex] [tex]\longrightarrow{{x}^{2}=\sqrt[-]{9}} [/tex] [tex]\red\longmapsto\:\large\underline{\boxed{\bf\orange{x}\green{=}\blue{-3}}}[/tex] So , 3 and -3 are the zeroes of polynomials x²-9.. Now , ➥Sum of Zeroes : – [tex]\longrightarrow{\alpha+\beta=\dfrac{-b}{a}}[/tex] [tex]\longrightarrow{3+(-3)=\dfrac{-(-0)}{1}}⟶3+(−3)[/tex] [tex]\longrightarrow{0=0}[/tex] ➥Product of Zeroes : – [tex]\longrightarrow{\alpha\beta=\dfrac{c}{a}} [/tex] [tex]\longrightarrow{3\times{-3}=\dfrac{-9}{1}} [/tex] [tex]\longrightarrow{-9=-9}[/tex] [tex]\pink\longmapsto\:\large\underline{\boxed{\bf\purple{L.H.S}\green{=}\red{R.H.S}}}[/tex] Reply
Answer:
Correct Question :-
Given :-
To Find :-
Formula Used :-
[tex]\clubsuit[/tex] Sum of roots :
[tex]\longmapsto \: \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}[/tex]
[tex]\clubsuit[/tex] Product of roots :
[tex]\longmapsto \sf \boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}[/tex]
Solution :-
Given :
[tex]\dashrightarrow \sf\bold{\green{x^2 – 5}}[/tex]
[tex]\implies \sf p(x) =\: x^2 – 5[/tex]
[tex]\implies \sf x^2 – 5 =\: 0[/tex]
[tex]\implies \sf x^2 =\: 5[/tex]
[tex]\implies \sf x =\: \sqrt{5}[/tex]
[tex]\implies \sf\bold{\red{x =\: \sqrt{5}}}[/tex]
And,
[tex]\implies \sf\bold{\red{x =\: – \sqrt{5}}}[/tex]
[tex]\therefore[/tex] The zeroes of quadratic polynomial is √5 and – √5.
Hence,
[tex]\rule{150}{2}[/tex]
[tex]\bigstar[/tex] Verify the relationship between the zeroes and co-efficient :
Given equation :
[tex]\dashrightarrow \sf x^2 – 5[/tex]
where,
[tex]\leadsto \sf\bold{Sum\: of\: roots\: :-}[/tex]
[tex]\implies \sf \sqrt{5} + (- \sqrt{5}) =\: \dfrac{- 0}{1}[/tex]
[tex]\implies \sf {\cancel{\sqrt{5}}} – {\cancel{\sqrt{5}}} =\: 0[/tex]
[tex]\implies \sf\bold{\red{0 =\: 0}}[/tex]
[tex]\leadsto \sf\bold{Product\: of\: roots}[/tex]
[tex]\implies \sf \sqrt{5} \times (- \sqrt{5}) =\: \dfrac{- 5}{1}[/tex]
[tex]\implies \sf – \sqrt{25} =\: – 5[/tex]
[tex]\implies \sf\bold{\red{- 5 =\: – 5}}[/tex]
Hence, Verified.
✯✯ QUESTION ✯✯
Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and coefficients of x²-9..
━━━━━━━━━━━━━━━━━━━━
✰✰ ANSWER ✰✰
[tex]\longrightarrow{{x}^{2}-9} [/tex]
Using Identity : –
[tex]\longrightarrow{{a}^{2}-{b}^{2}=(a+b)(a-b)}[/tex]
[tex]\longrightarrow{({x}^{2}+(-9)({x}^{2}-(-9)}[/tex]
[tex]\longrightarrow{({x}^{2}-9)({x}^{2}+9)}[/tex]
Now ,
[tex]\longrightarrow{{x}^{2}-9=0}[/tex]
[tex]\longrightarrow{{x}^{2}=\sqrt{9}} [/tex]
[tex]\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{3}}}[/tex]
[tex]\longrightarrow{{x}^{2}+9=0} [/tex]
[tex]\longrightarrow{{x}^{2}=\sqrt[-]{9}} [/tex]
[tex]\red\longmapsto\:\large\underline{\boxed{\bf\orange{x}\green{=}\blue{-3}}}[/tex]
So , 3 and -3 are the zeroes of polynomials x²-9..
Now ,
➥Sum of Zeroes : –
[tex]\longrightarrow{\alpha+\beta=\dfrac{-b}{a}}[/tex]
[tex]\longrightarrow{3+(-3)=\dfrac{-(-0)}{1}}⟶3+(−3)[/tex]
[tex]\longrightarrow{0=0}[/tex]
➥Product of Zeroes : –
[tex]\longrightarrow{\alpha\beta=\dfrac{c}{a}} [/tex]
[tex]\longrightarrow{3\times{-3}=\dfrac{-9}{1}} [/tex]
[tex]\longrightarrow{-9=-9}[/tex]
[tex]\pink\longmapsto\:\large\underline{\boxed{\bf\purple{L.H.S}\green{=}\red{R.H.S}}}[/tex]