Step-by-step explanation: 15x+17y = 21 17x+15y = 11 15x+17y+17x+15y = 21+11 32x+32y = 32 32(x+y) = 32 x+y = 32/32 x+y = 1 Reply
[tex]\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{15x + 17y = 21} \\ &\sf{17x + 15y = 11} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\begin{gathered}\begin{gathered}\bf \: To \: Find – \begin{cases} &\sf{value \: of \: x + y}\end{cases}\end{gathered}\end{gathered}[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] ↝ Given equations are [tex] \: \: \: \: \: \: \: \: \bull \sf \: 15x + 17y = 21 – – – (1)[/tex] [tex] \: \: \: \: \: \: \: \: \bull \sf \: 17x + 15y = 11 – – – (2)[/tex] ↝ On adding equation (1) and equation (2), we get [tex]\rm :\longmapsto\:15x + 17y + 17x + 15y = 21 + 11[/tex] [tex]\rm :\longmapsto\:(15x + 17x) + (17y + 15y) = 32[/tex] [tex]\rm :\longmapsto\:32x + 32y = 32[/tex] [tex]\rm :\longmapsto\:32(x + y) = 32[/tex] [tex]\bf\implies \:x + y = 1[/tex] [tex]\overbrace{ \underline { \boxed { \bf \therefore \: The \: value \: of \: x + y \: is \:1}}}[/tex] Additional Information :- There are 4 methods to solve this type of pair of linear equations. 1. Method of Substitution 2. Method of Eliminations 3. Method of Cross Multiplication 4. Graphical Method To solve systems using substitution, follow this procedure: Select one equation and solve it to get one variable in terms of second variables. In the second equation, substitute the value of variable evaluated in Step 1 to reduce the equation to one variable. Solve the new equation to get the value of one variable. Substitute the value found in to any one of two equations involving both variables and solve for the other variable. The Elimination Method Step 1: Multiply each equation by a suitable number so that the two equations have the same leading coefficient. Step 2: Subtract the second equation from the first to eliminate one variable. Step 3: Solve this new equation for variable. Step 4: Substitute this value of variable into either Equation 1 or Equation 2 above and solve for other variable. Reply
Step-by-step explanation:
15x+17y = 21
17x+15y = 11
15x+17y+17x+15y = 21+11
32x+32y = 32
32(x+y) = 32
x+y = 32/32
x+y = 1
[tex]\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{15x + 17y = 21} \\ &\sf{17x + 15y = 11} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\begin{gathered}\bf \: To \: Find – \begin{cases} &\sf{value \: of \: x + y}\end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
↝ Given equations are
[tex] \: \: \: \: \: \: \: \: \bull \sf \: 15x + 17y = 21 – – – (1)[/tex]
[tex] \: \: \: \: \: \: \: \: \bull \sf \: 17x + 15y = 11 – – – (2)[/tex]
↝ On adding equation (1) and equation (2), we get
[tex]\rm :\longmapsto\:15x + 17y + 17x + 15y = 21 + 11[/tex]
[tex]\rm :\longmapsto\:(15x + 17x) + (17y + 15y) = 32[/tex]
[tex]\rm :\longmapsto\:32x + 32y = 32[/tex]
[tex]\rm :\longmapsto\:32(x + y) = 32[/tex]
[tex]\bf\implies \:x + y = 1[/tex]
[tex]\overbrace{ \underline { \boxed { \bf \therefore \: The \: value \: of \: x + y \: is \:1}}}[/tex]
Additional Information :-
There are 4 methods to solve this type of pair of linear equations.
To solve systems using substitution, follow this procedure:
The Elimination Method