Find the value of k for whichsystem of equation x-3y 3 and 3-ky = 1 has a no solution About the author Vivian
Answer: 9 Step-by-step explanation: x – 3y = 3 a₁ = 1 b₁ = -3 c₁ = 3 3x – ky = 1 a₂ = 3 b₂ = -k c₂ = 1 If the equations have no solution, Then, [tex]\frac{a1}{a2}[/tex] = [tex]\frac{b1}{b2}[/tex] ≠ [tex]\frac{c1}{c2}[/tex] [tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex] ≠ [tex]\frac{3}{1}[/tex] Taking [tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex] [tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex] [tex]\frac{1}{3}[/tex] = [tex]\frac{3}{k}[/tex] k = 3 x 3 k = 9 Hope this Helps Mark me as brainliest Reply
Answer:
9
Step-by-step explanation:
x – 3y = 3
a₁ = 1
b₁ = -3
c₁ = 3
3x – ky = 1
a₂ = 3
b₂ = -k
c₂ = 1
If the equations have no solution,
Then,
[tex]\frac{a1}{a2}[/tex] = [tex]\frac{b1}{b2}[/tex] ≠ [tex]\frac{c1}{c2}[/tex]
[tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex] ≠ [tex]\frac{3}{1}[/tex]
Taking [tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex]
[tex]\frac{1}{3}[/tex] = [tex]\frac{-3}{-k}[/tex]
[tex]\frac{1}{3}[/tex] = [tex]\frac{3}{k}[/tex]
k = 3 x 3
k = 9
Hope this Helps
Mark me as brainliest